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INVERSION IN AN INHOMOGENEOUS MEDIUM

Robert H. Stolt

The Born-WKBJ inverse method outlined elsewhere in this report requires a back-
ground velocity that is laterally invariant. When the real earth does not favor that res-
iriction, we have to generalize the method; although, as it turns out, we can retain the

WKBJ concept of a locally constant velocity.

We define a background wave operator

~ 2
L~v4 2 1
v3(2) (1a)

with the understanding that »(Z) varies slowly compared to the wavelength of the
waves we wish to describe.

The WKBJ solutions P to the background wave equation

-~

LP ~ 0 (1b)

can be found by writing P = ¢'%, yielding a non-linear partial differential equation for

@:

—%¢.€7¢+i§2¢+f—2-=0 (2)
Express ¢ as a power seriesin o™l
p = wpotprtolpet (3)
and equate each power of @ in equation (2):
o) = —5 (4a)

2V g0 Vg = iV (4b)
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RV go. Vg = iVEpy = (V )2 (4c)
ete.

The WKBJ approximation to ¢ is the high-frequency limit in which only ¢y and ¢,

need be retained.

The nice thing about WKBJ solutions is that they are essentially one-way. They do
not generate reflections and won't, without special effort, refract around turning
points. This will allow us to retain the concept of up- and downgoing waves that is cen-

tral to any migration scheme.

WKBJ Green'’s functions satisfying

w2

v¥(Z)

can also be constructed. As a function of Z—#,, these creatures take the form (in 3-D)

Ve +

CulwZ|Zg) = ~6(k ~ Zy) (5)

exp[+iw|Z — #4| /v (Z0)]

G (a;2 |2y) = —— (Ba)
an |2 - Z4|
or, in 2-D
. . m|55"5?’o| w|# - 2]
G2 (2 |2 = — |#iY ol + Jg}—— B8b
Pzl = 1o el ) e (8b)
@ |lwlz -2
S NP | - ol
ﬂ:41 'u(zo)

If v depends on x and z only, a Fourier transform over y of the 3-D Green’s function
yields the 2-D like form

CI(w.kyiz.2 |To,0) = :—L—(Ef)—,-/-,:Ho 'u(c;:‘o) \/ I—J——é—o— |z = zo|| (Bc)

For waves traveling nearly horizontally, the concepts of up- and downgoing may not be well defined. We are

not really interested in waves traveling at such extreme angles, however, and so we will pretend they don't ex-
ist.
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As Z departs from Zg, these expressions become invalid. However, equations (4a)
and (4b) can be used to extrapolate the Green’s function from the region of #, to any-
where. It is convenient, though perhaps not necessary, to make v so well behaved that

@0 remains single-valued and continuous.

We are now ready for our fundamental assumption, namely that our WKBJ wave and
Green’s function accurately represent wave propagation in the real earth, neglecting
only reflections, scattering, refraction turn-arounds, and the like. We can then model

reflections using the Born approximation just as before.

The inversion scheme we hope to develop will look much like the earlier ones. We
first migrate the data, obtaining a function of midpoint, offset, and depth M (z,,.75.2) .
The total Fourier transform of this quantity, we hope, will be a linear combination of

the double Fourier transforms of the two potential components a; and a; .

The first thing to do is to define a downward-continuation operation, which we will
do via Green's theorem. Given a closed surface S enclosing a volume V, and a wave

function P which obeys

w?

Ve +
vi(Z)

LP~

P =0 (7)

Then, for any point Z in V, we can define a surface integral over S the value of which is
PatZz:

I.(z,0) = - { ds' [P(z'.w) _5%7 G (w,2|2) - G (02 |fc")a—fl—,~ P(z'w)] (8)

—4011/' [P(2,0) L'C (w,2|2") - Cu(w.2|2") L'P(Z"0)]

P(Z,0)

Note that this integral gives the same result regardless of whether G, or G . is used.

Suppose, now, that S can be divided into two parts, the "upper" part Sy located
above Z and the "lower" part S;, beneath Z . We then define P to be upgoing at 2 if

an =0 ®)

aG_
I (w) = —!’ ds'[P — - G- op
L

I am not necessarily advocating this procedure as the only or even a desirable method for constructing the
one-way Green's functions. The important point in all this is that "one-way” Green's functions should exist
which can, if necessary, be fabricated one way or another.
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This definition should make good intuitive sense, since G_ can only map backwards in

time, which means downwards in space, if a wave is upgoing.

Hence, for an upward-traveling wave,

(10)

a6 - 9P
2o) = 1O (Zw) = - : - ¢
P(Z,w) 1Y) (2,w) 5{] ds [P P - S
. 3 o .
Equation (10) represents a formula for downward continuing P; that is, reconstruct-

ing P at Z given values of P along a surface above Z .

A downward-traveling wave may be defined in a corresponding manner. We also
expect equations complimentary to (9) and (10) to hold when the exploding Green's

functions ¢, is used.

Equations {8) through {10) were developed assuming P to be source-free inside V.

If, more generally,

P = Po+P, = Po+ [dV' (.8 (11)
Vv

so that
p = -§ (12)
then equation (8) becomes (if Py is an upgoing wave)
I (Z.0) = Py(Z.w) (13a)
and

I(2,w) = P(Ew)- [dVG.S = P - P_ (13b)
V

Since the source term P, should be more or less upgoing on Sy and downgoing on
S . it is reasonable that it should be invisible to the 7, integral (13a). That is not true

for the /. integral, however; P, is visible to /_ on both Sy and S, . Consequently, both
I and 18 %0 .

3 I don't necessarily advocate this to be the actual formula to use in downward continuing P, since perfectly

good finite-difference methods have been developed which can do the job. Care should be taken, however,
that whatever method is used, the result should be rendered equivalent, in phase and emplitude, to equation
(10). This could be a minor bather, since finite-difference algorithms tend to concentrate on phase and ignore
plitudes.
I seemn to be using the same symbol (S) to denote surfaces [e.g. as in equation (10)] and source distributions
[asin (11)]. I hope this doesn't confuse anyone any more than they are already.
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However, it does not follow that P cannot be downward continued in this case.
Suppose that the source S goes off at time = 0. Then P, is located purely in positive

time and, conversely, P_ is located only in negative time. Thus, fort > 0,
I(2.t) = P(2.t) (14)

We expect IE) o "see” only those sources which are above the observation point Z
(hence producing a downgoing wave). The integral I over the upper surface will

register the sources below Z , so, for t > 0.
I (Z,t) = Po(E.t)+ [ dv' Cu(2.¢]2.¢ = 0) S() (15)

z'>2
This expectation can be strengthened by applying Green's theorem to a volume whose
upper boundary is Sy , and whose lower boundary S, is a plane just barely above the

observation depth z. Since the observation point () is not in this volume, we have
IV (2,0)+18) (2,0) = - f dv'G_{w;Z | 2') S(2') (18)
2'<2
The right-hand side of this equation involves only sources above z, and exists purely in
negative time. Thus the surface integral 7 (z,t) is, for t > 0 identical to the surface
integral —7{*) (2,¢) (the sign change occurs because the direction of the normal
derivatives changes), taken along a plane infinitesimally above z. Since, for t > 0, all
the waves from sources above z are downgoing, they make no contribution to & | An
5

the rest of P, including that from sources below z, are upgoing at z, hence register on

1) | Since they would not register on a boundary infinitesimally below z, equation (15)

follows.

All of this brings us up to the point where Claerboutians have been (intuitively) for
years. A "downward-continued" wave recreates, in the absence of sources or reflectors,
the real wave. If at t = 0 a source exists, the real wave is duplicated down to the source
for positive time. If we downward-continue past the source, its contributions to the
downward-continued wave are the time-reversal of its contribution to the real wave.
So, what does all this have to do with inversion? Suppose that the reflected wave meas-

ured at the earth’s surface is
D(Z,|Zsiw) = f dV G, (&2 |Z;w) V(Z.0) G (Z|Zs:w) (17)

with £, and Z; measured on the earth's surface Sg.
5 Okay, okay. It's possible that the arrival from a source sightly below z but a long way away may pick up
enough curvature to arrive at z a (slightly) downgoing wave. So what.
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Define a downward-continued wave (downward continuing both sources and

receivers)

WENZ, | Zs:0) = ! ds,’ ! dS,'C_(Z, |2, 0)T(Z,")D(Z,'| 2,":0)T (2 )C(Zs'| £¢:0)(18)
E E

where T is a shorthand for the differential operator

o d d
TE) = 50~ %n (19)
« -

and 8,/0n is the derivative normal to the earth's surface. (a/ag is understood to
operate on the function to its left.) W, then, is just a double candidate for Green's
theorem. We expect for W&) the following generalization of equation {(15) to hold: for
source and receiver coordinates Z; and Z; on the same plane zs = z, = z , then

WE (29,2 |25.2) = [ dz'Cu(Z|2) V(R)Cu(B'|Z) + [ di'

2'>2 g'<z

C_(2,|2") V(Z') C(2']2s) (20)
(All the quantities in this equation are functions of frequency ' which, for the sake of
brevity, has not been explicitly included.) By interpretation, W& should include

reflections from points below the source-observation plane z; = 2z, = z , plus the

time reversal of reflections from points above z.

To support this expectation, form a closed surface S whose upper boundary is the
earth’s surface Sy and whose lower boundary is a plane z' = z — ¢ located just above

z. Define the surface integral
W(z,,z|z5,2) = {dsg'{uss'c_(fgusg')T(a*:s')fdf".

Cu(Zy [Z7) V(Z") G (27| 25") T(2s") Col@s'|Z5) (21)

The portion of W with both £,' and Z;' are on Sy is'just W) | W also has three other

parts:
W o= W + gEsz) 4 ylzE) 4 plz) (22)

W) corresponds to Z'on Sp but z,' = z — €. wizE) corresponds to z,' = z - ¢

and Z' on Sy . W) has both #,' and Z;' on the lower surface.
W can be converted to a volume integral via Green’s theorern. We have

W(zgzlzez) = [ d2, [ dzs'c_(g—g)fdi"c,, Vc+(§—§)c_

zg’<z-—c 2y'<z~¢
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Now, since the points :i:'g and Z, are outside the volumes spanned by :3:'9' and Z;', we

have

C_L-LC_ =0

“« o
More over,
_I;fd:i:'"c+ Ve. L = V(Zy) 6(2, - 2,")
so
W(xg,z |zg,2) = f dz' G..(:}:'g |2') V(2') C_(2'|Z) (23)
2'<z~-¢

As £ »0, the double integral W around the closed surface S becomes the time reversal
of reflections from above the plane Zg = zg = z . It is in fact the second term in the
expected form (20) for W&)

We now argue that of the four sub-integrals W&) w&.2) yE.2) y&.E) ang w) in v,
only #) can depend on reflections above z. W) and #(2-£) cannot because reflections
from above z — ¢ are downgoing at z — ¢ , hence an attempt to extrapolate them down-
ward to z using G_ must simply yield zero. To see that W{-#) is zero too, we need only
exploit the symmetry of the problem. Thus, by default, the time-reversed reflections

from above z must be included as part of W) . Thus,

W(E)(zg.zla:s,z) = W(:cg,zlxs,z)+!d8g'!dss'.
/3 5

C(2512,) T(z,) [ d2" Cu(@y'12") VE) Co(@"12,) T(3,) C_(3'|2,)  (24)

">z

To complete our argument that the correct form for W) is (20), we need only inquire
about the fate of reflections from below z. We now assert that such reflections are
necessarily upgoing at z. Hence, we can use equation (10) to eliminate the dS,’

integral in (24):

W(E)(xg,zlxs,z) = W(:ry,zlxs,z)+!dss' f dz".

4 2>z
Culzguz |27) V(") C(Z7]2,") T(Z,") C(2s'| 75,2)

Symmetry allows us to remove the integral over dS,' too, leaving us with equation (20).

Let us now generalize the definition of D given in equation (17) to be

D(zy.z |zs,2) = f dZ' Culzy.z [z'.2") V(z'2') Colz'.2' | 26,2 ) (25)

2>z
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that is, D is the reflection response from points below the source-observation plane

zy, = zgy = z . Then equation (20) can be written as
WE) = w+D

We now assert that the other surface sub-integral W(?) of W is equal to D. This follows
from the definition of W) and the same argument that gets from equation (24) to (25).
Thus

WENz, 2 |z5,2) = W(z,.2 |2e,2) + Wz, ,2 |2,,2) (28)

If we were to take a Fourier transform over « of equation (28), we would discover, since

¥ is nonzero only for negative time, that
W(E)(:rg,z |zg,2:t) = W(’)(a:g,z |zg,2;t) if t>0 (27)

Equation (27) will allow us to proceed from migration to inversion of reflection data.

We now define a "migrated"” field M to be the limit of WE) as time approaches zero

through positive values:
M{(zpm.zn.2) = ltirxolfdw g ~tet W(E)(:cg.z[xs,z:w) (28)

M has been expressed in terms of midpoint and offset coordinates
Tm = (g + 24) /R zp = (z5 — 2)/2 . and a single depth z = z; = 2, . In 3-D,
and z), are two-vectors.

Because of equation (27), W) can be replaced in (28) by W) which, according to

definition, is just (bringing back the small positive parameter &
WX zy, 2 | z5.2:0) = f dz,' f des' C(zg.2 |25,z ~8:w) T(z—¢)
D(zy'z—¢|zs'.z—ew) T(z—€) C(x:'.2 =8| Ts.2:00) (29)

The only values of z,' and z,' in the integral {(29) that can contribute to the migrated
field M are those very close to z, and z, (which must also be close together if M is to be

nonzero). Under these conditions, G_ and D assume constant velocity forms, the

relevant velocity being w(z,,,z) . Denoting these limiting forms to be
CEU(x’"'z)] .D[”(x""z)] we have
M{zp.zp.z) = Eingfdw g tut fd:cg’fdxs' GEv(x’"'z)] ((xg = zg").8:00).

7 D (o ez —e0) T GO (0 ) e0) (30)
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Using the expression

—igx ’CE'UE
[v] o) = k,z € * - _ K 1
CrNz,z:w) fdk,, e 2ig " q - 1 3 (31)
equation {(30) becomes (after doing the T-derivatives)
M(zm.znz) = - [ do [ dk, [ dks expilkyzy - ksze — £(g, + g:)] (32)

. plvEm] (kyg.z=€|ks.2 —£:0)

We now need an expression for D. We have

DY (ky 22l ks z=w) = = [ dz' ')

z—€
2
Y Ak, — ke,z') o (kg ks, 0, T, 2 ) (33)
n=1
where
(kg kg 0,2 ,2) = 1 e (34a)
49,9s v
and
1
az(kg,ks.w.xm.z) = (qy 9s — kyks) (34b)
49,95

Putting (33) into (32), we get

M(zpmznz) & [ dk, [dk, [ dz' [do f} oty (kg g 0, %, 2 )
2=—g

z=1

. ei[kvzv - kyzy + (g + g, ){z' - 2)] an(ky - ko2 (35)

Now, change some integration variables. We define

km = kg — ks (36a)
ky = gg + g5 (36c)

and note that

(36d)

do o 1 _ 31.\V//
dk,  v? qgqs . 2
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So, in terms of these new variables, (35) becomes

= 2
M(zm.zh.2) f dz’fdkm Y an(km.z') g Fmm,
z—-e n=1

S dky e® ) [ dkey e" By, (ke Ko 12 2) (37)
where
2T, &
71{km JFon ez T 2) = v 1+ —E 1+ — (38a)
2 -4
and
k2= k2
Yol kn kg T 2) = V1l op lop T 2) | (38b)
kz + kh

We now note that the functions 7, are real, even, very slowly varying functions of k, .
Therefore, the k., integral in (37) is nonzero only for z' very close to z (we actually
knew this already). This means that the lower bound of the z' integral can be changed
from z — £ to — = without significantly affecting the result. The 2' integral is then

recognizable as a Fourier transform of a,, leaving us with

M(xm.zh.z)a'u(zm.z)fdlcmfdlch fdlcz gt Emom + knzy ~kg2)

- 29 k= ko
U 1+ ]cf +|1 + k_,f al(km,—kz) + m az(km,—k,) (39)

That is, the three-dimensional Fourier transforms of M (z,,.z,,2 )/ v(Zy.2) is propor-

tional to a linear combination of the two-dimensional Fourier transforms of a; and a, .



