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A WKBIJ INVERSE FOR THE ACOUSTIC WAVE EQUATION IN
A LAYERED MEDIUM

Robert H. Stolt

In SEP-24 Clayton and I presented an approximate inversion scheme for acoustic
data. Though the method had the promise of greater speed and efficiency its realism
was somewhat dubious. Among other things a constant background velocity was
assumed. An extension of the method to the case of a vertically varying background

velocity is given below.

The Unperturbed (WKBJ) World

The fundamental assumption in this approach is that wave propagation is governed
by a slowly varying "background" velocity wv(z), and that reflections are caused by

rapid fluctuations of velocity and density about their background values.
The background wave equation will be
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The fundamental solutions to this equation will be taken to be the WKB wave functions
¢&. These functions are most easily expressed in the (p,z) representation, so, taking
a Fourier transform over the horizontal coordinate(s) =z, we have
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The WKB solutions (3) of (2) are just Gazdag's phase-shift propagators with a depth-
variable normalization tacked on. They are good approximations provided wv{z) is
slowly varying over a wavelength of @, and also provided |p| < |w| /v (i.e., provided
one doesn’'t get too close to critical angle. Actually they can be patched up to work at

critical angle and beyond, with a little extra effort).

A WKBJ Green's operator is easily constructed from g¢g. Write

Gk, wiz|2'] = vi(z>) ¢3(z<)
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where z, (z.) is the greater (lesser) of z and z'. It is easily confirmed that
2 2
2 Y - k2| C2(kpwiz|2) = - 8(z — 2) (8)
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From the definition (5) it is clear that G{ is outgoing (exploding) while G2 is incom-
ing (imploding). For what it’s worth, it is easy to see that G{ (G2) is nonzero only for

positive (negative) time.

The Real (Acoustic) World

We will assume that ¢§ and G2 can adequately model point-to-point propagation
in the real world. To model reflections, however, we will need to look at the real wave
equation, whose form we will take to be

¢ = 0; G. = —6(2) (7)
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where p and k are the "real” density and bulk modulus, and pg is a constant '"back-

ground" or reference density. The equation for ¢ can be rewritten as

w?

v¥(z)

V2 +

+ V{(wz)| o(w,2) = 0 (8)

where the potential term V(w,2) has two components
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V(wid) = u':i) ay(2) + V. ag(d) ¥ (9)
with
2
a\@) = %%‘—)1— L agle) = s -1 (10)

The Born Approximation

According to the Born approximation, a "real” impulse response can be taken to
be

c,2cl+clvee (11)

The measured reflection response at the earth’s surface is then G, - G2 =D, whichis

expressed in the (p ,z) representation as
D {(wikg.2g=0lks,2s=0) = f dz G2 (kg.w:0|2) V(w.ziky | ks) G2 (ks,w:2 |0)
0
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where g, = (w/v)(1 - kfvR/?)'2 g = (w/v)(1 - kRu?/w?)'7% are the vertical spatial

frequencies associated with source and receiver, respectively.

The Inversion

Given D, we wish to use equation (12) to recover the "potentials" ay and ap.
Back in SEP-24, when the background v was constant, this was almost trivial since the

integral in equation (12) turned out to be a simple Fourier transform over z.

Here, it isn't. It would appear that a rather messy integral equation must be

inverted to get to ap and a;

Things, however, are not so bad as they would appear. It turns out that equation

(12) can be inverted in a very straightforward manner. Here's the trick:
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We first "migrate” the data U by downward continuation of sources and receivers
followed by an integration over frequency to recover the t=0 component. That is, we

define the migration M of D tobe

Mkmiknz) = [ do C(kmkn,2) 95 (wky,2) 9o (wks2)
- D (wiky.0| k,.0) (13)

where k,, =k, — ks, k, =k, + k; are midpoint and offset spatial frequency, the two
o are just the WKB wave functions (equation 3) travelling in the desired directions,
and C(k,,,k,,0,2) is just some slowly varying real function thrown in to massage the
data, to be specified later. A sum over k, of M would essentially be a phase-shift

migration of the data.

We now argue that M(k,,.k,,z) can be a function of earth parameters only in the
immediate neighborhood of 2. (If downward continuation has really propagated us to
the depth =z, then this claim is just an expression of causality.) We can strengthen the

argument by substituting (12) into (13):
M(km.kh.Z) = f dz' [al(km,z’) A 1(km.kh.z.z') +
()

+ az(kmnzl)AE(km-kh-Z-Z') (14)

where
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Only at the point z = z'" do the phases in (15) line up. We are justified in claiming,
therefore, that A is nonzero only for a very narrow range about z'= z. Within this

range, ¢y, and gs can be considered constant, allowing a drastic simplification of
(15).

Define k; = —q; = ¢s. It is then easy to show that
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Substituting these tidbits into (15) gives
1 N o 1 ik (22" w?
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We are now ready to choose C. A convenient choice would be
8lg, (2 )q:(z)g, (0)g:{0)]"7*
C o kn.0.2) = [gg(z)as( 3;9( )g:(0)] (1)
because then
e k22| 1
[ﬁll = [ dk, &7 ll' 3 (=2)
2 ky lc,a - k;f
kf+ kf

With this choice for €, 4; and A3 depend only on the difference between z and z',
and in fact are just Fourier transforms of very simple expressions.

Thus a Fourier transform over 2z of M yields

M (kpp Rep, Kz ) k2~ k2
m h 2 - a‘l(km'kﬂ) + ""c—za““;‘“];% aa(km)kg)
2 h

\/ k2kf
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An expression which, given two or more k, values, is easily inverted to obtain a; and

(23)

aa.
To summarize, then, the complete inversion algorithm is as follows.
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1)

2)

3)
4)

5)

The surface data field D is Fourier transformed! over time, source, and receiver
coordinates to obtain D (w;k,,0|%,,0).

D is migrated according to equation (13). Using expression (21) for C, and the

defining equations for gqg, 9., k;, and ¢q,

-i [ dek,
M{km kp,z) = 8 [ dowD{wik,.0(ks,0)e °

g,(0)g,(0) |

2 (24)

That is, D is simply phase shifted and summed over w. The multiplicative factor
[q,(0)gs(0)])"”2/| w| is mot depth-dependent, so the algorithm, if not exactly cheap,

is at least simple.
M is Fourier transformed over z.

The result is inverted for a; and az via equation (23), probably by least squares,

since more than two k5 values should be available.

Double inverse Fourier transforms of a; and ay yield their spatial representa-

tions.

{The “best” way to effect these transforms is moot. Some of the options are: (a) FFT's over Z,, Z,, time; (b)
FFT's over midpoint, offset, and time; (¢) FFT's over midpoint and time, but a Radon transform (slant stack)
over offset. Take your pick.
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APPENDIX A: EXTENSION TO 2-1/2 DIMENSIONS

The algorithm developed above will work in either a 2-D (line sources and receivers
in a medium which changes in only one horizontal dimension) or a 3-D world. The
seismic experiment is usually ~ 27,/2-D (point sources and receivers in.an otherwise 2-D

environment) in which case some modifications are in order.

Suppose that ay and ag are functions of z and z only, and that 0 is meas-
ured along the plane y,; =y, = 0. Then equation (12) becomes (because V does not

depend on y)

D(w:k,.0,0{%,.0,0) = fdz fdky G2 (kg ky . :0|z) VG2 (ks.koy . wiz | D)

' f dzTg, () + g, (2]
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* ’UEGZZ) al(ky_ks-z) + [Qg(z Jgs(z) ~ kyks ~ kyz] aa(kg"ksvz) (A1)
where
R
2 . W 2
= X k2 _k
Qg Y g ]

This expression can be simplified by doing a stationary phase approximation to the ky

integral, yielding

1 i ‘Z dz'Tg, (') + g4(z")]
D ik, ,0,0 ks- ’ =7 d ; f v
(CJ [ | 0 0) 4 f i Qg (O)qs(O)q‘; (Z)QS(Z)I ” 1h(z )

Ti S aillky—ks2) + [gg(2)0 (2)=kgks ] Ga(ky"ks'z)] (a2)

where g, and g, are understood to be evaluated at k, = 0, and

h@):{d._w_f{ 1,1 (A3)

z)  qd(z")

Except for the new factor [ih(2z)]"/? appearing in the denominator of (A2), this equa-
tion is identical to the 2-D equation (12). Thus a 2-1/2-D inversion will work just like

the 2-D, except the multiplier € in the migration step should include the factor
[in(z)])"*
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Ca1pe = Cp’ Vik(z) (A4)

Equation (24) (the migration equation) thus becomes

z

—ifdz'k,
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The other steps in the algorithm are unchanged.



