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Uniform Asymptotic Expansion of the Green's
Function for the Two-dimensional Acoustic Equation

Mathew J. Yedlin

Summary

A uniform asymptotic expansion in the frequency domain is derived for the
Green's function of the two-dimensional acoustic equation. The expansion is uniform in
that it is valid near the source region. It is not valid for caustics, which can arise due to
rapid changes in the gradients of the material parameters - the density and bulk
modulus. The Green's function which is obtained describes only the body wave arrivals
in a smoothly varying whole space. Other wave types, such as surface waves or head

waves are not included in this expansion.

Introduction

There has been extensive literature dealing with asymptotic ray series solutions to
the wave equation (Babich 1964; Karal & Keller 1962; Cerveny, Molotkov & Psencik
1977). In this paper, a technique is developed for the calculation of the Green’'s func-
tion for the two-dimensional acoustic equation with material parameters depending
both on x and z. The usual geometric optics assumptions, that the wavelength, A, is
much less than any material property divided by its gradient, is used in the derivation
of the Green’s function. It is the purpose of this communication to demonstrate how
the classical method of computing the Green’s function (Courant & Hilbert 1962) can
be combined with an appropriate asymptotic series expansion in inverse powers of fre-
quency. The Green's function may then be calculated by the solution of a system of
ordinary differential equations which define the arrival time and amplitude of the wave
disturbance. For body wave arrivals, only the first term of the expansion need be
included (Aki & Richards 1980).
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Solution of the Canonical Problem

The two-dimensional time-transformed acoustic equation for pressure is
w® 1
(—;C—— + V-;—V) P =6(z~z')6(z~2") (1)

where p is the density, x is the bulk modulus and P is the pressure. The parameters p
and « depend on both x and z, so standard Fourier separation methods may not be
used. The right hand side of (1) indicates that the pressure field, P, is driven by a line
source. The task now is to construct the Green’s function, or impulse response for the
pressure field, with the constraining assumption of geometrical opties described previ-

ously.

A first attempt might be to use an asymptotic expansion of the form

A,(z.2)

P(z,z,0) = ( 7% Z (i0)" (2)

where 7 is the arrival time of the disturbance, and A,{(z,z) are a set of amplitude
coefficients. The factor (wT)~/? in front of the summation indicates that the outgoing
wave is cylindrical. A direct substitution of () into (1), with the requirement that the
coefficients of the powers of w vanish, yields T and 4,,(z,z). Such a direct substitution

leads to two fundamental problems.

Firstly, the delta function term on the right hand side of {1) appears only in the
third term of the asymptotic expansion. Secondly, as T approaches zero, the expan-

sion becomes invalid since (wT)~? becomes infinite.

The first problem is easily solvable by recognizing that it is the Green’s function
which is being computed. Hence, the homogeneous equation is solved under the
appropriate boundary and initial conditions. Then, to compute the strength of the
source, both sides of (1) are integrated over a disk surrounding the source. Gauss’
theorem is applied in two dimensions, and the strength of the source is evaluated.

gioT
the factor in front of the summation in (2) is chosen to be the Hankel function, which

To solve the second problem, a new expansion is introduced. Instead of

represents travelling cylindrical waves. Therefore,

(x 2)

Pz,z,w) = H ( 0) z (3)

where @, like 7, is a phase function to be determined. The kind of Hankel function

chosen in (3) depends on the sign of the inverse Fourier transform over frequency. In
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this paper, the inverse Fourier transform kernel will be e***, Thus, the Hankel function
of the second kind will be chosen, since that choice represents waves travelling away

from the source at (x',z’).

Substitution of the expansion (3) into the two-dimensional homogeneous acoustic
equation results in a complete hierarchy of differential equations. Each equation is
obtained by setting the coefficient of w to zero. The result of these substitutions is

given by the following equation:

12 An(z,2) (x 2)
-V H 2] ——et | 4 V—- H 2)
57 o) B w0 5%
(z.z)
+ H e AnlZ.2) =0 4
( ) 20 o) (4)
Use of the expressions
@ dH(B)( 8)
V(H, (@8)) = w —2 % g g
da
and
(%) @
d?H, (w8) B -H ( 8) - 1 dH,, (w8)
da® da
ith o« = =p =98 =g =28 -
witha = w0 ,8, =p = . and 8, = ¢ = 32 results in
® = Anzz) | (ve) | 1
®H, (w8 - + =
[} (w )nz;,:n ('iﬁd)n p K
@
df, (08) | & An(z,2) 1 V¢ @ (ve)® 2 An(z,2)
V=98 + —— - Vev) ———
da ng,, (i)™ P fol] p Z (i)
@ 1, &dn(zz) 1 An(z.2)
+ H, (wB) | V=V ~= V& =0 5
] (w ) p n2=0 (’iw)"‘ p = ('LCJ)n ( )

In equation (5) the coefficients of w must vanish separately. The coefficients of w? and
w! which vanish yield the differential equations for the phase @ and the leading ampli-

tude term, 4,. By setting the coefficient of w® to zero, the eikonal equation is obtained:

(ve)r = £ (8)
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- The right hand side of (8) is the slowness squared { v~? ), and the components of V@ are
proportional to the components of the wave front normal. Equation (8) can be viewed
as the frequency-normalized dispersion relation associated with (1), when the medium
is homogeneous. Similarly, corresponding to the coefficient of w!, the following equa-

tion is derived:

]
Lozg - (V97 L ¢vLlve |4, + 2 veva, =0 (7)
P p® P p
or
lgeg - L 4 yloyg ]A,, + 2v8.94, = 0
P k@ p P

Solution of the Transport Equation

Whereas ® , the phase function appearing in (3), can be determined by solving the

following four ray equations,

dz - 2 dz - 2
a9 Y a9 T
dp _ _08lnv dg _ _Olnv
a0 oz d® oz '

the transport equation for 4, is a more difficult one to solve. The equation for 4, can be
solved along a ray by converting it to an ordinary differential equation for 4,. This can

be accomplished by using the fact that, from the eikonal equation,

Ve =

e |uy

where S is a unit tangent vector along a ray. Substitution of V@ into (7) results in

2 d4, 1.s 1 1
=2 = |2V - — + V270 | 4 8
pv ds PR vae 0 (6)

or

-4

2
1 29 . _L. 1
2£uve S§ * Y, V8 ds

A, =C A, =Ce (8a)

with s chosen as the arc length along a ray and C a constant to be determined. 1t is

worthwhile examining (Ba), in the neighborhood of the source, under the assumption
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that p and & are essentially constant.
With these assumptions in view, s simply becomes r, the distance from the source

to the observation point. Also, all gradients of p vanish. The phase 8 is simply % and

1

F
—| = — . Therefore,
™V

v

Veg = v

,=e 17 (9)

¥ith ry and 7, approaching zero, 4, is identically 1, and A, becomes C. It is important
2

to note that if H, (w®) was not used in the original expansion, then A, would have been
172

i C
given by -

Thus, with r; and r; approaching zero, the value for 4, in the

neighborhood of the source, would have become indeterminate.

Now all that is left to do is to find C in (8a). This is done by writing the pressure

field in the neighborhood of the source as

@
P(z,z,0) = CH, (wB)
where © = —’E Integration of (1) around the source, and use of the fact that P and not
VP is continuous in the source neighborhood results in

r 2n r
) Vep o é(r) _
hm{{——-p rdrd®_1r1£%{{ ot dr d@ = 1, (10)

where 8 is the polar angle, and —6217%} is the circularly symmetric two-dimensional delta

function. Equation (10) may be further simplified by use of Gauss' theorem and replac-
@

ing P by CH, (w-;’};)

The application of Gauss’ theorem to the integral on the left hand side of (10)

results in

r 2n
, vép . 1 8P
lim r dr d® = lim —— r de =1 11)
‘{'[ p r0 p(z'.2") { ar (

where p(z'.2z') is the value of the density at the source point. Now as r approaches zero,

(2) - .
H, (L) becomes —ﬁln(mi). Thus, or becomes —C —-. Substitution of this asymp-
v i v or nT

totic result in {11) results in
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C = -—Bg—————)—x’ ,.Z (12)
44
Therefore, with C determined, the leading term of the the Green’s function for the

two-dimensional acoustic equation is given by

P = —Ef%z—'l H2(08) 4. (2.2) (13)

where @ satisfies {(8), and X,, (z.z) satisfies (7). Implicit in (13) is the dependence of P
on source coordinates (x',z') and observation coordinates, as is the case in the usual

description of the Green’'s function.

Conclusions

A combination of the method of asymptotic expansions with the standard method
of computing the Green’s function has been used for the case of the two-dimensional
acoustic equation. The method is valid for body wave arrivals, and is not valid when a
caustic is encountered. Such will not be the case if the material parameters p and «
vary smoothly enough over a wavelength. The expansion is uniform in the sense that

the singularity at the source is correctly accounted for.
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