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A Born-WKBJ Inversion Method For Acoustic Reflection
Data

Robert W. Clayton and Robert H, Stolt

Abstract

A method is presented for determining density and bulk-modulus variations in the
earth from standard reflection surveys. Explicit formulas are given which utilize the
amplitude-versus-offset information present in the observed wave fields. The method
automatically accounts for dipping reflectors, but since it is based on a Born approxi-

mation of the scattering equation, it is restricted to subcritical reflections.

For the inversion, the medium is considered to be composed of a known low-spatial
frequency variation (the background) plus an unknown high-spatial frequency variation
in bulk modulus and density (the reflectivity). The division between the background

and the reflectivity depends on the frequency content of the source.

For constant background parameters, the computations are done in the Fourier
domain, where the first part of the algorithm includes a frequency shift identical to
that in an F-K migration. The modulus and density variations are then determined by

observing in a least-squares sense amplitude versus offset wavenumber.

For a spatially variable background WKBJ Green’s operators that model the direct
wave in a medium with a smoothly varying background are used. A downward continua-
tion with these operators removes the effects of the variable velocity from the prob-
lem, and consequently the remainder of the inversion essentially proceeds as if the
background were constant. If the background is strictly depth dependent, then the
WKBJ Green’'s operators are analytic, and consequently the inversion can be expressed

in closed form.
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1. Introduction

In seismic refiection data, there are basically two sources of information about the
subsurface: traveltimes and amplitudes. The traveltimes of the various wavefronts in
the wave field provide information about the low-spatial frequency components (the
background) of the medium parameters. The amplitudes of the wavefronts, on the
other hand, are sensitive to the high-spatial frequency components (the reflectivity).
The two types of information sample different aspects of the medium. In this paper, we
will use the amplitude variations to determine the fine scale variations in the density
and modulus and it will be assumed that the background can be determined by
independent means. The field experiment necessary to provide the data for the
method is a "standard” {(or perhaps slightly super-standard) reflection survey with mul-

tiple offset coverage.

Our basic approach isg similar to that of Cohen and Bleistein (1977, 1979), Phinney
and Frazer (1978), and Raz (1980). We use a Born approximation of the Lippmann-
Schwinger equation to develop a forward equation relating the surface data to a
scattering potential. The scattering potential is an operator which depends on the
medium parameters, and essentially represents the reflectivity of the medium. The

details of this approach are outlined in the second section of the paper.

The use of the Born approximation will entail several assumptions about the
nature of the medium and the wave phenomena that is to be modeled. First the Born
approximation is limited to primary subecritical reflections only. Also, since it is based
on a perturbation of the true medium about the background variations, it is necessary
to be able to construct accurate solutions for the background variations. In this paper,

we use the WKBJ solutions for the background which are discussed in the third section.

The remaining sections of the paper deal with the inverse problem. In the fourth
section an inversion scheme is presented for the case when the background variations
are assumed constant. In this case, the problem may be cast in the Fourier domain
where the observed wave field can be algebraically related to the variations in the

medium parameters.

In the fifth section the inverse problem in a laterally varying medium is treated. It
is shown that a migration of the data essentially removes the effects of the variable
background, and the remainder of the inversion proceeds as in the constant back-
ground case. A special case of this where the background variation is strictly depth
dependent is given in the final section. This case is of interest because the WKBJ

Green's operators are analytical.
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We will assume the source used in the experiment is band-limited. This usually
causes problems with inversion methods because at some point in the inversion
scheme, the source has to be deconvolved. This, of course, can only be successfully
done within a limited passband, and attempts to invert data outside this passband will
usually cause instabilities. We will bypass this problem by only reconstructing the

parameter variations within a limited spatial frequency range.

We will also assume that the sources and receivers used in our experiment have no
spatial extension (i.e. they are "points") and are of infinite aperature (that is, for a
given source, receivers cover the whole of the earth’s surface, and vice versa). This, of
course, does not conform to current practice, and we acknowledge that some more
analysis is required to establish the correspondence between our experiment and that

actually performed.

Finally, we assume that the amplitude information in the data is retained. Since
we are not attempting here to unite the rapid earth parameter variations with the slow
ones, it is not necessary to know the absolute amplitude of the data. However, if we are
to sort density from modulus variations, we must know accurately how amplitude

varies with offset and, perhaps less accurately, how it varies with time.

2. The Forward Scattering Equation

In this section we derive the Lippmann-Schwinger equation for acoustic problems.
The Born approximation of this equation will lead to a simple relationship between the

observed data and the scattering potential.

The derivation starts with the linear isotropic acoustic wave equation

2
@ e ly
P

LP=|%

P=0 (1)

where P is the pressure field, K is the bulk modulus, and p is the density. Associ-
ated with the wave operator L, is the Green's operator or resolvent, which we formally
define as (Taylor, 1972, p. 129)

¢ =-L"! (2)

There are actually many Green's operators that satisfy equation (2). They are dis-

tinguished from each other by the manner in which the inverse of L is evaluated. If

2

we replace —w* in equation (1) with (—iw+¢)?, and consider L to be a function of the

variable g, then we can define two independent Green's operators
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+ - lim -1
G¢"= el0 L(s) (3)
and
-_lim -1
C™ = 210 I8 (4)

The ezploding Green's operator G*, projects a wavefront a positive distance from the
source point, as time increases. The imploding Green's operator G-, moves the wave-
front a negative distance as time increases, or equivalently, if we keep distances posi-

tive, then G~ projects backward in time.

In this paper we will employ free-space Green’s operators. If the problem has
external boundary conditions such as a free surface, then the Green's operators should
satisfy them. For acoustic problems, this can usually be accomplished by a linear com-

bination of the free-space Green’s operators.

In general, we cannot analytically determine the Green's operator for arbitrary
variations in p and K. Instead, solutions are usually cast as a perturbation about a
simpler problem for which analytic solutions are available, or at least can be easily
computed. In this paper we will perturb about a reference problem for which the wave
pperator is
w® 1

+ 7V =

Ly =
r K, Pr

(5)

where K, and p, are the reference bulk modulus and density respectively. The refer-
ence density and bulk modulus will be chosen to be the slow variations (the back-
ground) in the true density and bulk modulus. By slowly varying we mean that the
scale length of the variations is much greater than the wavelength of the waves under

consideration.

Torelate ¢ and G, (the Green's operator for L,), we employ the simple identity
A=B+B (B 1-4A"14
and associate ¢ with A and G, with B. Hence, if we define V = L ~L, then
G=GC,+G. VG (6)

Equation (8) is the Lippmann-Schwinger equation for ¢, and V is termed the scatter-
ing potential. It is valid for any choice of G, that satisfies the same external boundary

conditions as .
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As written, equation (8) is implicit in G, but it can be formally solved.
G = ([ - GTV)_l G, (7)

The Born series is an expansion of the right- hand side of equation (7) in powers of the

operator VG,.

G = Gy Z(V("r)i (8)
i=0
The Born approximation of the Lippmann-Schwinger equation is the first two terms of

the series
G =G, + G, VG, (9)

In this section we are constructing a model for the observed data so it is appropriate to

use the exploding Green's operators (C* and G,*).

In figure 1 the Born series and the Born approximation are represented in terms
of Feynman diagrams. It is clear from this figure that if the source and receiver are
above the scattering points, then the Born approximation models primary reflections
only, while the next two terms include the effects of transmission and first order multi-

ples.

The suitability of the Born approximation depends on how well the reference
Green's operator models the direct wave between any two points in the medium. If it is
a good approximation then the higher order terms have the interpretation given in
figure 1. Thus it is clear what physical effects we are neglecting by omitting the higher
order terms. If the reference Green's operator is a poor approximation to the direct
wave, then the higher order terms contain corrections for the direct wave. In this case
the series is very inefficient to sum up, and the suitability of the Born approximation is
doubtful.

For acoustic problems, the scattering potential is simply the difference of the

wave operators in equations (1) and (5)

1 1 1 1
V:wz—————--——+V'—-—"“——' 10
K K, P pr (10)
For convenience, we will introduce the dimensionless medium parameters
K,
a1=[?r—1 andag=%-—1 (11)
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FIG. 1. A schematic interpretation of the Born series is shown. The left panel shows
the first two terms in the Born series (the Born approximation). It contains a single
scattering point, and hence models only the effects of primary reflections. The total
response at the receiver z; due to the source at z,, is the integration of the scattering
point over all points in the subsurface. The addition of another term in the series adds
another scattering point, as shown in the center panel. This term accounts for first
order transmission effects. The right panel shows the next term, which includes the
effects of first order multiples.

where a, represents the spatial variations in bulk modulus relative to the reference
modulus, and ap represents the variations in density. For the remainder of the paper,
we will consider a, and ap as the medium variations, and not worry about recon-
structing the actual modulus and density variations from them. With these definitions

the scattering potential becomes

a a
Liv 2y (12)

V(r,z) =
(z.2) K, Pr

The presence of derivatives in equation (12) represents a departure from basic scatter-
ing theory, in which V is a simple function of the spatial variables rather than a
differential operator. As it turns out, however, the structure of ¥V will not greatly

complicate the problem.

The observations of the wavefield response are made on the horizontal surface
(s = zg = 0). In the 2-D problem they are functions of the receiver location Zy. the
source location z,, and frequency. It is convenient to define the data wavefield D as

D =G - G,, which is the total recorded wavefield minus the direct wave from the
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source to the receiver. Using the Born approximation, the relationship between the

data field and the scattering potential is!

D(zy.zq,0) = <z,,0|GF |z 2> V(z'\2') <z',2'| GF| z,,0> S{w) (13)

Equation (13) is a forward equation in the sense that given the parameters varia-
tions a; and a,, the observed data wavefield can be computed. For the remainder of
this paper, we will be concerned with the inverse problem: finding a; and az from

measurements of I on the surface.

3. WKBIJ Solutions for the Direct Wave

The suitability of the Born approximation depends on how well the reference
Green's operator models the direct wave in the medium. Since the effects of
reflections, transmissions, and multi-pathing are best handled by the Born series itself
(Stolt and Jacobs, 1980), we can ignore these effects when constructing the reference
Green's operator. This makes the solution for the direct wave a candidate for the WKBJ

approximation.

To find the two-dimensional Green's operators for the reference problem

L,.GF= —6(z)6(z), they are cast as an asymptotic expansion of the form? (Yedlin, 1980) -

= Ap(z.2)

@
Gz ,z,w) =+ H: [w8(z,z)] -
n=o (iw)*

(14)

Under the WKBJ approximation, we retain only the first term in the expansion. Hence,
@
Ci(z,2,0) = £ He [0 0(z,2)] 4,(z.2) (15)

As (z,z) » 0, we require that G,* approach the constant background form. Thus
8(z,2) » Vz?+2°/2,(0,0) and A,(z,z) -» p,(0,0)/4i. Applying the reference wave
operator L, to equation {15), the following equations are generated for 8 and 4, by

matching powers of w.

Pr

(V8)? = K,

(18)

and

1In this paper, repeated dummy variables will generally signify en implied integration. For example, equation
(13) 18 really a total volume integral over the intermediate points ', 2.
2 H Y i3 the Hankel function of the first kind , and H{? s the Hankel function of the second kind.
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v -
Pr K,.8

JA,, =R ygua, (17)
Pr

The first equation is the Eikonal equation and its solution for @ governs the travel
time of the wavefronts. The solution for A, from the second equation determines the
amplitudes of the wavefronts, The higher order terms in the expansion correct for the
low frequency behavior of the solution. The WKBJ solutions will be accurate if the
wavelength of the waves is considerably shorter than the scale length of the variations
in the medium. This is the motivation for choosing the background parameters to be

slowly varying.

For a constant parameter medium, the Green's operators have a simple analytical
form which is given in the next section. For the slightly more general case of a depth

variable background, the Green’s operators are

ﬂfdz'q(z')
~/ o
G.,.*(:c.z.w) = M fdk'x eﬂc,x e

_m +2iVq (2)g(0)

2,2
1) = g2/ 1 - B (19)

Equation (18) points out that the WKBJ solution is not valid near turning points
[g(=) = 0].

For a laterally variable background, the WKBJ solutions must be obtained numeri-

(18)

where

cally. The straight forward construction of G/* using equations (15), (18). and (17) is
certainly possible. However, finite-difference solutions of one-way wave equations
(Claerbout, 1978; Clayton and Engquist, 1980) may provide a better approach provided
the tendency of current formulations to overlook amplitude effects is corrected or

compensated for.

4. Constant Background Inversion

In this section, an inversion method is presented for the case when the reference
parameters K, and p, are assumed to be constant. The solution in this case is sim-
ple because the WKBJ Green’s operators have an exact analytical form. The resulting

inversion will contain a frequency shift which is identical to F-K migration (Stolt, 1978).
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The first step is to Fourier transform? the data wavefield [equation (13)] over Ty

and z,.
D(kg.ks.w) = <kg |zy> <z,.0|CF |z, 2">
cV{(zh2') <2',2'| G | 2,0> <24 | ks> S (w) (20)

In the two dimensional problem (line sources and receivers), z;, . k;, and ks are
scalars. The equations that follow will hold for the three- dimensional problem if we

consider them to be two component vectors, and adjust the occasional factor of 2.

For constant background parameters, the Green's operators in equation (20) have

the analytical expressions

ipr e—i(kgz.—qglz'l)

<k, 0|GY|z"\2"> = 21
UAE o (21)
and
- ik z'+g, {2'|)
' t + —— 1-pr N *
<z'2'|GF ks 0> = Ton 2a. (22)
where
27.2 2;.2
Al Uy ’Cg W Uk
= — - - 1 - 23
9 = 1-——— and g o N/ 2 (23)

In the expressions for g, and g, we have intentionally factored an ® outside the

square roots to indicate that q;, g5, and @ have the same sign.

We will now use the fact that the Green’s operators look very much like the kernel
of a Fourier transform to obtain a simple equation relating the data field to the scatter-

ing potential. Substituting equations (21) and (22) into equation (20) we have

—p2 g THgaTmggle])
D (kg kg 0) = = Jdz' fdz' fdz" fdz" %
9
ei(k,z'+q, l2°])
Viz'z") S{(w) (24)

295

8We adopt here the Fourier transform conventions {for 2-D)
ik-x
2

Note that this means that Fourier transforms over source coordinates have the opposite sense to those over
recelver coordinates.

<x|k> =

,and <k|x> = <x|k>'
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We now assume that a(z,z) and ay(z,z) are zero for z<0. This will allow us to
drop the absolute signs in equation (24) because V{z',z') will be zero for z'<0. Actu-
ally, removing the absolute signs will mean that any scatters located above the datum
plane 2=0 will only contribute to D in negative time. This point is discussed further in
the next section. Using the definition (12) of ¥V and integrating equation (24) by parts
yields

=tk —kg)a'~(gy+9,)2']

D (ky .k, 0) = 2’;’ [dz' fdz' £

49,9

wa
[z @@ ) + (g gs = kgks) ap(z2")|S () (25)

r

The two integrals in (25) are recognizable as Fourier transforms over z'and z'. Thus

—~Pr

D(ky ks, w) = P
g 9s

wa
F al(kg’ksv_Q'g"QS)

X
+ (QQQS = kgks) aa(kg_ks-"Qg_Qs) S (w) (28)

That is, the triple Fourier transform of D is alinear combination of the double Fourier
transforms of @) and a3 Counting variables on both sides of (26) indicates the
inverse problem is overdetermined. That is, there should be more than enough infor-
mation in D to solve for a, and as. If V were a more general operator, things would
have been different. V¥V would then be a function of two sets of coordinates

[V(z,z) » V(z.z |z'.z")] and equation (26) would have the form

Rmps
49,95

D (kg kg w) = = V(kg-_Qg | ks s ) S () (27)
That is, the triple Fourier transform of D would then be proporticnal to the quadruple
Fourier transform of V. Counting variables again, we see the problem is underdeter-

mined and consequently there would be no way to calculate V given D.

The first step to solving for a; and az is to change to midpoint-offset coordinates.

The midpoint wavenumber (k,,) and the half-offset wavenumber (k) are defined by?*

4These definitions of midpoint and offset wavenumber differ from other authors (c.f. Yilmaz and Claerbout,
1980), because we have used a conjugate rather than a symmetric relationship between source and receiver.
This arises directly from the operator notation used in this paper. In the physical domain [equation (29)], the
relations for midpoint and offset are the same with both approaches.
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km = kg — ks and ky, =k, + k, (28)

In the space domain, these substitutions correspond to a midpoint (z,,). and a half-
offset () ) defined as
Ty + T

:r:m=———2——— and ), =

:vy - Ts

5 (29)

Also, since a; and ap depend on -(g,+¢,), a new independent variable (k,) is
defined

21. R 27.2
%) 'UT’C ) 'U.rks
Jc,,-_—._qg_qs-_I 1..?__;: 1 - 5 (30)

After a little algebra, equations (28) and (30) may be combined to obtain expressions

for w, gs, and g, in terms of the new variables ky,, kj, k,.

vrk Tt T
o= - -2 VL + RE/EE||L+ kR /KE] = wlem o ks (81)
- kz 2
Qg = — "'é" 1- kmkh/’cz (32)
— k’ 2
gqs = — = 1+ kpmkn ks (33)

Combining equations (26), (31), (32), and (33) we obtain

D (ko en e} = 4 élAiacm.kh,k,) a4k k) |5 () (34)
where
A (b ) = = ‘;C'f’f_’ o (35)
and
el k) =+ LEZ TR (2 ) (39)

In equation (34), it is understood that w obeys the functional relationship given in
equation (31), which is identical to the frequency shift used in F-K migration (Stolt,
1978).

To invert equation (34), we start by deconvolving the source S(w). Thus we define
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-1 D (Icm.lch.w)

Dk, kp k) =
(m h 2) pr S(C\J)

(37)

Since in general, S(w) will be bandlimited, this operation can not be accomplished
exactly without introducing instabilities. This is the point where Gel'fand-Levitan
inverse methods (Ware and Aki, 1969; Jacobs and Stolt, 1980) have problems. To avoid
the instabilities, we simply set D' to zero outside the frequency bandwidth of S(w),
which means we will only be able to resolve the variations in a; and az within the

passband
W1 = w(km.kh.kz) = Wy (38)

where w; and wp are the lower and upper limits of the passband of S(w). In figure 2
the region of resolution is illustrated for ky=0. It is interesting to note that by
increasing the ratio k%, the circles in this figure will shrink in radius. Hence, it is
possible to partially fill in the low frequency variations in the parameters by increasing

the offset in the experiment.

akz

" 80 (kg ki k)

FIG. 2. The shaded ring shows the region of resolution of the bulk modulus and density
variations. Here k,, k,,, and k, are respectively the vertical, the midpoint, and the
offset wavenumbers. The width and radius of the ring depend on the passband Aw of
the source time function. As the ratio k, %, is increased. the radius of the ring
shrinks. This corresponds in the physical domain to increasing the source-receiver
offset relative to the depth to the reflector.
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With the (partial) deconvolution of equation (34), the inverse problem reduces to
2
D'k Jep k2 ) = izl Ayl Kop Ky ) ay(lem iy ) (39)

Since the a;'s are independent of k;,, the measurement of D' at any two distinet
values of k;, will suffice to determine a; and as. In a standard reflection survey how-
ever, D' is usually determined at several values of kj;. and therefore a more robust

evaluation is possible. For example, a least-squares determination is given by the solu-

A,D'
= EAED' (40)

In this equation, the summations are taken over k; with the restriction that

tion to the equation

NAE YA 4
VA4, AR

a1 (Kkm Ky )
aa(km Ky )

|khkm‘<|kz|2 (4'1)

The necessity for the restriction lies in the fact that the Born approximation as used in
this paper, is not adequate in the evanescent zone. This restriction is sufficient to
avoid both evanescent zones in equation (30), and to avoid turning points in both the up
and downgoing paths by keeping both g, and g, strictly negative in equations (32)
and (33).

Thus far we have been concerned with the 2-D problem which has line sources and
receivers. The full 3-D problem with point sources and receivers is only slightly
different. In the usual seismic experiment the data is recorded with (assumed) point
sources and receivers, but along a line on the free surface. In the appendix the results

presented in this section are modified for this case.

5. Inversion with a Variable Background

For a realistic earth model, we must assume that the background parameters will
vary from one location to another. If we ignore this variation as we did in the previous
section, then the inversion scheme will incorreetly locate the parameter variations.
Fortunately, if the background variations are known, their effects may be removed
from the inversion problem by a downward continuation. This step is actually a migra-

tion of the data prior to the inversion.

The migration is based on the representation integral over a closed surface 3. If

we assume that P is a solution to the wave equation L,P = —-F, where F is a volume
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source, and G are the Green's operators associated with L,, then the representation

integral is

I(x) = f[ds G~ (x|s)T(s)P(s) (42)
where
a1 1 4
Is)= onp,  p, n

and n is the normal to the surface. The arrows in the definition of T(s) have the fol-

lowing meaning

a 1 1 4

B

anp, pr 8
« -

_|a
_a'n.A

B A

Py fr

a8
on B

A

The imploding Green’s operator is used in equation (42) because, since it projects
backwards in time, it is the proper operator to backtrack a wave to its point of origin.
If we wanted to extrapolate waves away from their point of origin then G, would
replace G, in equation (42). Using the divergence theorem, we may convert [/~ to a

volume integral

vt v-—l—-v] P (x")
Pr Pr

I~(x) = fdx’G,.‘(xlx’)
v

= [axGr(x|x) [ly - L] P(x)
v « -

where V is the volume bounded by S and z'€ V. Applying the fact that L,P= -F
and L.G,”= =1, I~ is found to be '

P(x)+fdx' G (x|x)F(x') forx eV

I~(x)= (43)

v
fdx’ Gr(x|x")F(x') forx ¢V
v

If there are no sources inside the volume then /~(x) is a representation of P(x)
inside the volume, and is zero outside. When sources are present, they contribute to

both the inner and outer solutions.

Consider applying the representation to a field point outside the volume. The
geometry is shown in figure 3. The closed surface integral can be broken up into two
line integrals, if we assume that the edges are sufficiently far away that their contribu-

tion is zero. Hence we can write by equation (43)



149

Jep'“\ =0

depth =2 ~

FIG. 3. The left panel shows the closed contour (s) to be used in the representation of
the response at x. The closed contour is then broken into two line integrals over s,
and s, shown in the right panel. The contribution from the edges is assumed to be
zero. In the text, it is shown that for positive time, the response at x can related to a
line integral of the recorded data along s,.

I(x) = I, (x) - I;(x)
= fdso Cr(x|50)T (s )P (s0) — fdsz Gr(x[52)T (52)P (52) (44)
= fdx'G,."(xlx')F(x')
v
Suppose the source distribution F' is concentrated at zero time, then the volume
integral in (44) is zero for all time greater than zero. Consequently, the two surface

integrals in (44) are identical at all positive times. We now assume that # has been

-generated by sources partly within V and partly beneath it. Thus we have

P(x) =fdx'G).+(x|x')F(x’)+ fdx'G,.+(x[x')F(x')
v ve
= PU(X) + PL(I) (45)

If we now take x to lie infinitesimally below the surface s,, then we can evaluate I, (x)

to a very good approximation as

I(x) = [ds,G(x]s,)T(s,)P(s;) = P{x) (48)
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Contributions from source above s, are filtered out by this surface integral because G,~

can only project backwards in time. With this result, equation (44) can be rewritten as

I (x) = fdsoGr—(x I50)T (56)P (s0) = Pr(x) + ./‘dX'er(x x)F (x') (47)
\'{

The substance of equation (47) is that it is a prescription for downward continuation of
P from the surface s, to the point x. The construction of the surface integral on s,
yields the portion P; of the field P at x which is due to sources below x, plus the time
reversal of the portion of P from sources above x. Note that the sources above the

plane s, contribute only in negative time.

Now we generalize the representation to the data wavefield given by the Born

approximation [equation (13)]. The appropriate /= in this case is

I (zg|zg) = -—fds Gy (zy |s)T(s) fds’D(s [s)T(s")Gy (s | zg) (48)

where s and s' are located on the closed surface S. Applying the divergence theorem

twice, the representation can be converted to the volume integral

I(zg|zs) = = fdx fdx'Gr(x, [ x)(Lr = Lo )D (x| x WLy — Lo )G (x'] x4) (49)
v v « - « -

where x and x' V. For z, and z, below the volume equation (49) reduces to

I~z lzs) = fdx‘/'dx'G,."(xg |x) Ly D(x|x") Ly Gy (x'|xy)
174 v - «

= [axGr(xg |2V (x)Gr (x| xy) (50)
4

We can use the previous analysis to construct a downward continuation operator
from the representation in (48). To do this we apply the steps of equations {44)
through (45) to each of the surface integrals (s and s'). The result are (provided z,

and z, are infinitesimally below the surface s, )
L(zylzs) = [ds, [ds'y G (g [5:)T (5)D (52 |5 )T (5" )G (5", 1 25)
= Dy {z, | z,) (51)
and
I (zy|xs) = fds,,fds',, Gr(zg 150)T(56)D (8 |8)T(8'6)Cy (s's | Z)

= Dy (zg|z,) + [dxG(xg |x)V(X)G (x| %) (52)
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where D; is the reflection data from points below s,. The volume integral involving
GTVG~ is zero in positive time. Thus, for ¢t > 0/, and /, are identical, and represent
the downward continuation of the data field. The G~VG~ term in /, simply represents
the well known fact in migration that the response from reflectors above the datum

plane is pushed into negative time.

The result obtained in equation (52) can be easily generalized to move the data
wavefield between any two planes. To move D from the depth z—¢ to the depth z we
have for t > 0.

Dy(sy|s's) = [ds [ds'C (s [s)T(s)D(s |s)T(s)C(s'] s",) (53)

where s and s'lie on the surface s,_,.

We are now in a position to invert the data for the scattering potential. First we
define the migrated wavefield M at depth z to be

Pr{Zm,2 )y (T 2 ) M(zy,2,2) = lim fdco et Dy (25,2 | z5,2;0)
ti0

=fdwlo(xy.z]zs.2:w) (54)

The presence of p, and v, in this definition will simplify things later on. For now we just
note that with this definition, the triple Fourier transform of M is dimensionless. We
may now use equation (53) to relate the data field in equation (54) to the data field a

small distance (z—¢) above. Writing this out for the 2-D case we have
prvy M(z4,2¢,2) = lim fdm e tot fdxg 'fd,xs' Gy (zg,2 |2, 2 —£;0)T (2,2 —€)
ti0

Dy (wy'z—€|xs' . z—€)T (25" 2 ~&) Gy (Ts 2~ €| T5.2 1) (65)

As time goes to zero, the region of support for the z,' and z,’'integrals shrinks to a
small region centered around the midpoint between z, and z;. Under the assumption
of a smoothly varying background, G, and D; will assume their constant parameter
forms with the relevant parameters being K,(z,.z) and p,(%,,,z). Substituting in the
Green’s operators from the previous section [equations (21) and (22)] and performing

the derivatives in the T operators we have

PrUy M(zgy,25,2) = fdmfdkgfdk,DL (kg,z—€| kg, 2z —£;0)

'ei(kgzv-k,z,) e-’ic(qy+q,) (56)



152

Substituting in the constant parameter form for D; [equation (34)] we have

vp M(zy.%5.2) = = [dw [dk, [ dk, o kg2 mke2,) ~iz(a +a,)
2

. ZA'L(’CE -ks-Qg-QS) a‘i(kg—ks.-—qg—qs) (57)
i=1

Even though it is not explicitly mentioned in equation (57), the coeflicients 4;
depend on z,, and 2z via the background modulus and density K,.(zs,,2z) and
Pr(Zm.2).

Equation (57) looks suspiciously like a Fourier transform and indeed, we can put it

in that form. Changing integration variables in (57) from {(w.k,.ks) to (k..k,, .k ) yields

M{zp,z)p,2) = ‘fdkmfdkh % __3703_ i{kyy T g 2, 4K 2)
z
2 Ai(k lk :q ;q )
X g Us 9257 (ke ks ) (58)
i=1 r

With the forms (35) and (38) for A, and A, plus the relation

dow YUy _J knzi, \/ kh‘.? 1
= 1+ = 14+ — 59
dk, 8 k2 kf Ay(kg ks qp.9s) (58)

we obtain

tk,, 2, kg 2y %)

M(zm.zh,z) = — Tz—gl)—g/-g fdkmfdkhfdk, e

2
’ Zai(km-kz)Bi(km-kh-kz) (60)
i=1
where
em®® _ f  km [ Kkf
B ({ky Ky .k =1—L 1+ — 14+ — 61
1( m iR z) 18 ’C,a kf ( )
and
kgz - khz

Ba(km-kh-kz) = B 1{km . kp ke ) (62)

kZ + kf
Note that B; and By do not depend on the spatial coordinates. Equation (60) is in
fact a 3-D Fourier inverse transform over k,,, k;, and k,. Taking the Fourier transform

of both sides we arrive at the final result



153

. 4
M(kmvkh!kz) = E ai(km 'kz )Bi(kwnkh. 'kz) (63)

i=1
Thus, just as in the constant background case, the 3-D Fourier transform of the
migrated field is a linear combination (with known coefficients) of the 2-D Fourier

transforms of ¢y and ap.

6. Inversion With A Depth Variable Background

In this section we consider a special case of the previous section in which the
background parameters are allowed to vary only in the depth direction. The WKBJ
Green’s operators in this case are analytic and consequently explicit formulas can be

derived for the inverse problem.

For a depth variable medium, the WKBJ Green’s operators are given by equation

(21). With these we can form the Born-WKBJ approximation of the data field.

t,of de Ty, (2")+g, (2 )]

= =0} = —pr(0) y e
D kg 2y =0l k2o =0:c) = 8"\/‘1g(0)93(0) [ i \/qg {(z)gs(z)
' ;J—':Z_) al(ky ~ks,2) + [Qg(z)%(z) - kgks]aa(ky—ks,Z) (64)

where g, and g, are the same as in equation (23) except that now the velocity is a func-

tion of z.

Equation (52) for the downward continued field /, can be evaluated explicitly in

this case. Fourier transforms over the lateral coordinates yields
Iy(ky.z |ks.z) = = [dsC (k.2 |s)T(s) [ds'D(s|s)T(s")Cr(s'|ks.z) (85)

In this expression we have set the continuation depths for both the sources and
receivers equal to z. To evaluate this expression we need only to substitute in the

explicit form (18) for each G,”, and do the derivatives in each T. The result is

z i}dz'( g *+a5)
Tolbya ko) = 2E8 N/ 20O T p e olk0) (o)

In the derivation of this equation the derivatives of gy and g, were neglected in com-

parison to the derivatives of the phase terms. Note that as z - 0, the downward contin-

ued field [, approaches the data field D, as it must. According to equation (68),
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downward continuation is achieved in the vertically varying case by multiplying the
z

data by the phase factor exp[—ifdz’(qy+qg )], and adjusting the amplitude of the data.
0

The phase factor is that used in the Gazdag phase-shift migration method (Gazdag,
1978). The amplitude factor has no analog.

By equation (54), migration is achieved by integrating the downward continued

field /, over all frequencies and dividing by p,v,. Formally,

7oy z‘]'dz'( +g,)
M(ky ks, 2) = mfdm-\/ :ng%% g0 o D (k0| ks,0) (87)

According to equation (63), the Fourier transform over z of this quantity is a linear
combination of the double Fourier transforms of the desired quantities ¢, and ap. In
the appendix, the necessary modifications are given to incorporate point sources and

receivers into the solutions presented in this section.

Conclusions

An inversion scheme has been presented to determine the rapid variations in bulk
modulus and density from the amplitude versus offset information present in a seismic

reflection survey. The procedure consists of two steps.

First, a migration of the data is performed with WKBJ Green's operators for an
assumed slowly varying background variation in the medium parameters. The migra-
tion essentially removes the effects of the background from the inversion by
transforming the recorded wave field from the time domain to the depth domain. For a
constant background, this step is similar to FK migration. For a depth variable back-
ground a phase shift migration is used. For a laterally variable background the WKBJ

Green’s operators have to be constructed numerically.

The second step is to determine the parameter variation from the migrated data.
It is shown that the triple Fourier transform of the migrated data is a linear combina-
tion (with known coefficients) of the double Fourier transform of the bulk modulus and

density variations. Thus, a simple least squares solution can be used to invert the data.
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APPENDIX

Incorporating Point Sources and Receivers in the Two-Dimensional Solution

The solutions given in the text are for a two-dimensional medium. However, it is
trivial to modify the solutions for the full three-dimensional case. For example, the

three-dimensional equivalent of the constant background equation (26) is

-1 pf w?
D(ky,ky lks,k.y';w) = Zﬂ—a -Z-—q-? ";—2— Cli(ky _ks,kv“ky','—q—Q')
r
+ (qq' ~kyks — kyky')az(ky"ks-ky"ky’-_q"q') S(w) (A1)
where
_ W 'U.,? kE ’cz W -\/ UTE +k 2
7= 1—F(g+ y)andQ"';; 1';;(’% v

In this equation primed variables refer to the source location, while unprimed variables

refer to the receiver location.

The seismic experiment is usually conducted along a line (say y=v'=0), and the
medium parameters are assumed to be invariant in the y direction. In this case the

a; have the form
ai.(ky —kssky'—ky'!"Q"q’) = ai(kg—ks!“q”q') 6(ky_k'y') (AB)

To restrict the 3-D problem to one that can be handled by the 2-D algorithm outlined in
the text, we start by inverse transforming over k, and k,'. and evaluating the data

field along y=y' = 0.
D (kg .0l ke.0:0) = [dky [diey' D (ky.ky | ks ky"i0) (A3)

The integral over k,' can be evaluated trivially because of the assumed form of a; in

equation (AR).
D (ky.01ks.0:w) = [ diy D (kg .ky | ks.ky i) (A4)

To remove the remaining integral over k,, we express the a; as a Fourier

transform over z. That is

a;(ky—ks,—q~q') = [dz e %)% o (ky—k;,2) (A5)
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Substituting equation (A5) into equation (A4), and interchanging the order of integra-

tion we have

2
D (ky.0|ks,0i0) = fdz izl S dkyAi(ky ks by, q,q")

‘a;i(ky—ks,z) e~Ha+a)z (AB)

where the A; are the 3-D analogs of the factors defined by equations (35) and (38). If
we assume the 4; are slowly varying with respect to the exponential, then we can
evaluate the k, integral by stationary phase. To do this g+¢' is expanded about the

point where its derivative with respect to k, is zero, which in this case is the point k,
= 0. Thus,

q+q' =k, +Icyzk”,
where k., is given by equation (30), and

_kz

k o -
* 9g9s

In the last expression q, and g, are the two-dimensional vertical wavenumbers defined

by equation (23).

Using the standard stationary phase formulas, equation (A4) may be expressed as
2 o
D(ky.0|ks.Oiw) = 3} A; a; (A7)
i=1

where the @; are scaled versions of the a; used in the text

& (z,2) = 3‘%’;—) (A8)

and the factors X,- are related to the 4; of equations (35) and (38) by

~ 9g Qs
Ay N\ / ik, Ay (A9)

The result is, of course, subject to the approximations used in the stationary
phase evaluation of the k, integral. However, since most seismic data is far-field, we

expect the approximation to be reasonably accurate.

For the vertically varying medium, a similar argument leads to a modification of

the multiplicative factor in the downward continuation algorithm. We obtain
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Prall I S
v gi(z)  ad(z)

2
I,(kp.2 ks 2) » I, (Kg,2 | g,z ) ifdz' (A10)
(]
The rest of the inversion proceeds as before.

The modification required to adapt the laterally varying algorithm to point sources

and receivers, will be left as an exercise for the reader.
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