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AN APPROACH TO THE INVERSE SEISMIC PROBLEM

Robert H. Stolt and Bert Jacobs

Abstract

A formal method for inverting multi-dimensional seismic data is developed, bor-
rowing freely from the concepts of quantum scattering theory. It is shown that the
measured quantity in the seismic experiment is essentially the on-shell 7 matrix of
that theory. An expansion of the T matrix in powers of inverse source amplitude yields
successive approximations to the seismic parameters. The first approximation is
essentially a migration. Each successive approximation requires calculation of a for-
ward problem and a migration. The forward calculation involves volume integrals and
appears in general to be computationally prohibitive. However, under circumstances
where higher order terms are due mainly to surface multiples, the computational mag-

nitude drops substantially.

Introduction

Since the 1977 paper by Cohen and Bleistein, linearized inversion schemes for
seismic data have become fairly common. (See, for example, Bleistein and Cohen
(1979); Cohen and Bleistein (1979); Raz (1980); Clayton and Stolt (1980)). These
schemes ignore multiple reflections and solve only for small perturbations of earth
parameters from an initial estimate. Also in the literature are Gelfand-Levitan inver-
sions - starting with Ware and Aki (1989); Berryman and Green (1980); Jacobs and
Stolt (1980) - which, if they work at all, require a layered medium and a perfectly

deconvolved source.

We outline below a theory of seismic inversion based on ideas from gquantum
scattering theory. In common with the Gelfand-Levitan approach, multiple reflections

are accounted for and a close initial estimate of all earth parameters is not required.
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In common with the linearized inversion methods, spatial variations of earth parame-
ters in all directions are allowed, and the source amplitude and waveform need not be

perfectly known. Much of the following was presented in SEP 24.

A full inversion with this method appears computationally formidable, probably

prohibitive. Used as a surface multiple remover it appears relatively attractive.

A simple 2-D acoustic version of the method is presented in some detail. However,
the emphasis of this paper is on theory rather than the presentation of a practical

algorithm, which, in fact, is yet to be accomplished.

Theory

The physical quantity to be measured we will call ¢. If ¢ is a scalar quantity (e.g.
pressure) it will be a function of all spatial coordinates and time or frequency. If it isa
vector quantity (e.g. displacement) it will also be a function of a discrete 3-valued
parameter which indicates direction. In what follows the collection of spatial coordi-
nates plus (if applicable) the discrete direction parameter will loosely be referred to as
the vector Z. Since the wave equations dealt with here will be invariant under time
translations, frequency can be treated as a constant parameter. In the frequency
domain, for fixed frequency w, the collection of conceivable p{w,Z) reside in a complex
vector space on which the wave equation may be defined as a linear (differential)

operator equation:

L{w)p(w) = 0 (1)

In this equation a ~ has been placled over the L to indicate that it is an operator rather
than a vector or scalar quantity. By writing p{w) without its argument # we indicate

the vector whose component or element at 2 is ¢(w,Z).

The seismic experiment will involve generation of an impulse response which may

be considered to be a Green’s operator 6(&:) satisfying
L(0)f(w) = -1 (2)

In this equation 1 is the unit operator (1 = ¢). Since G is an operator rather than a
vector, its elements depend on two sets of coordinates. We write
G(w) ~ G(widy |Zs) = <Zy|G(w)|Zs>, the last representation being in so-called Dirac

In what follows we will assume the reader to be at least marginally farniliar with linear operator theory and

with the use of Dirac notation in the integral repreasentations of operators. If you aren't, but still want to read
this paper, Taylor, 1872, Chapter 1, gives an excellent introduction to the subject.
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notation. The coordinates on the left refer to an observation point, those on the right a
source location. For a fixed source point Z,, & is a function of i:'n and may be treated
as a vector much as, in a finite dimensional space, the individual columns of a matrix

may be considered vectors.

The wave operator E is a functional of a number of earth parameters
am(Z). m = 1,2,... such as density, bulk modulus, and so on. In the inverse problem
these parameters (or at least their rapid variations) are initially unknown. We attempt
to determine them from a partial measurement of the impulse response 6 We assume

that the known quantity is
D(w) = s(w)iy G(w)A (3)

where, in the simplest case, s(w) is the source amplitude, and Kg and ?\, are projec-
tion operators onto the surfaces (e.g. the plane at z = 0) where the geophones and
sources are located, respectively. In actual practice the source and geophone surfaces
are finile and source and geophone arrays are employed which put some spatial
averaging filters into Kg andxs. Moreover, the geophone surface is a function of
source location, which actually implies a slightly more general form than (3). However,
in what follows we will use (3) as a convenient form, with the understanding that some-

thing slightly different may be used in practice.

One inversion scheme will require the user to choose a base or background wave
operator Eo. hopefully close enough to E to allow convergence, bul not necessarily a
close copy. Indeed, a close copy may not even be possible, because first of all we don't
initially know Eo very well, and secondly we will have to be able (and willing) to solve
the forward and imaging problems for f:o (about which more anon). Eo may be, but

isn't necessarily, the explicitly invertible constant parameter wave operator.

We define a Green's operator 50 for Eg. which satisfies impulse response boun-

dary conditions and the equation
Lo(w)Go(w) = ~1 (4)
Eg must be such that this equation can be inverted. one way or another, to find 50. It
this can be done, the forward problem is considered solvable.
The difference between the actual and the background wave operators we define as

a "potential” v

V(w) = L(w) = Lo(w) (5)

~

V is in general a frequency dependent differential operator. Concealed within it are
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the parameters we are trying to find, however, and these parameters an,(Z) are fre-

quency independent functions of Z only.

~ ~ 2
G and Gg are related by the Lippmann-Schwinger equation.

5 - 50 = 51760 = Eof;é‘ (6)
All quantities are actually functions of the parameter w, which has been suppressed in
this equation. It should be appreciated that equation (5) is an operator equation, which

becomes, if we look at individual elements, an integral equation:
G(wiZy |Z) = Golw; 2y | Zs) + f dZ G(w;2, |2) V(w,2) Colw;Z | Z) (7

If V were a general operator, two sets of integrals over 2 and 2' would be required. As
it is, we have to remember that V in equation (7) is not a simple function of Z, but

rather is a differential operator.

We wish to use the Lippmann-Schwinger equation (6) to find V, given the known
data field I and the background impulse response 60. In the linearized inversion
schemes now extant, equation (6) is replaced by the Born Approximation

C - Co ™ ColCy (8)
Defining a modified data field to be D less the surface projection of the known Gy:
Do(w) ® s(w)hy € (@A = s(e)hy Coe)As (9)
we get the equation

Do(w) & s{w)A,CoVCohs (10)

which must be inverted to find V. Actually, this is impossible to do using data at only
one frequency. However, it can be done by using data at all frequencies and by making
use of the fact that the unknown parameters a,, are frequency independent and local.
The actual algorithm amounts to little more than "migration"”. The details of this having
been discussed in other papers (e.g. Clayton and Stolt, 1980), we will only say here that

Eg must be chosen so that 17 is determinable from {10).

QOur present goal is to improve upon the Born estimate of V. There are lots of ways
to do this, and it is not too clear at this point which is the best. Perhaps the most
straightforward is to iteratively improve the estimate of ¥ within the confines of the

Born approximation by updating E It En is the nth estimate of E define a potential I?n

ESee Taylor, 1972, p. 133; Clayton and Stolt, 1980, or bet*~~ «tii] derive it yourself.
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and a Green’s function G,, as

Vo = L - L, (11)
LG, = -1 (12)
The modified data field becomes
D, = sh(G ~ Gp)A, (13)
and the equation to solve for Vn 18
Dy = sA,CnV,Grh, (14)

This may in fact be the best way to do it. The problems with this approach are first, the
forward problem for 511 must be solved, and second, the "migration"” problem of obtain-

. -~ ~

ing V,, from D, must be done, both at each iteration. As L, takes on the high-

frequency parameter variations of E 5,, becomes a complicated function containing

not just a direct arrival but multiple reflections as well. After the first iteration G, is

likely to be difficult to generate, and equation (14) rather difficult to invert.

There are alternative approaches which allow the parameters in the base wave
operator to remain slowly varying and the corresponding Green's function to be multi-
ple free. We will outline here a conceptually simple approach based on the T matrix of

quantum scattering theory. (See Taylor, p. 134-141)

The motivation is to make the Lippmann-Schwinger equation {8) look like its Born

Approximation {8). To this end, we define an operator f(m) as

~ o~~~

T = V+ VeV (15)
If V is "small", T is, to first approximation V.
By post-multiplying T by 60, we get
TCo = V(Co + CVEy) = VG (16.2)
and similarly

GoT = GV (18.b)

~

By replacing cv by Go? in the Lippmann-Schwinger equation {6), we get the Born

Approximation like form

C - Gy = CoTCy (17)
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The approximate equation (10) relating the data to the potential generalizes to the

exact equation
Do(&)) = S(W)Ag CoTGoAs (18)

which now must be solved for T. Given '.F, the defining equation (15) must be solved

for V. Equation (15) looks nonlinear in ¥, but the substitution VG = TG, yields
T = (1+ TCo)V (19)
This equation, sometimes called the Lippmann-Schwinger equation for T (see Taylor,

-~

1972, p. 135), can in principle be inverted to obtain v given T.

Both (18) and (19) pose some practica%diﬁiculties, however. What makes equation
(10) reasonably tractable is the quasi-local character of V. f, though it has no more

degrees of freedom than V, is structurally more complex and solving (18) would

appear to be no easy matter. Equation (19) looks like a real mess, too.

éway out of these difficulties is to try a successive approximation scheme in which
(18) is used only to estimate V and (19) to estimate T. A simple way to do this is to

expand T and V in powers of s (@)~ !:

s I’;m . T = is‘m fm (20)

1 m=1

V=

e

Then, equating coefficients of powers of s~! in (19) gives

,~

fl = V1 (218)

-~

Tg = 172 +‘.;:1 60 ﬁi = i;g +ﬁi 60 ‘71 (21.b)

~

Tg = f;a +f15052 +fg§o§1

f;a + f;1 50 172 + I?a 60 171 + I’;i 50 f;i 50 ﬁl (21.c)
ete., and in general
-~ -~ m=1 . ~ o~
T = Vyy + Z To Go Vin—m' (21.d)
m'=1

EA "local” or "diagonal” operator is one which merely muitiplies functions of 2 by another function of 2 A

differential operator, though strictly speaking not local, is essentially so in that it does not require two sets of
coordinates to represent it. ~You might ask how (18) can be used to eatimate V' when V' does not appear
in (18). The answer ia that the relation (19) between 7' and V must come into play here too, as will shertly
be seen (we hope).
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~ ~

Equations (21) allow computation of fm given V, and previous termsin T and V.

Substituting (I + f&‘o )f/‘ for T in (18) and equating powers of s, we get

g Go Vl Go A, = Do (22&)
Xg Eo f;z 60 Ks = "Kg 60 I’;l 50 I’;l 60 Ks (22.b)
Ay CoVsCohy = =A, CoVy1GoVaCohy = Ay CoValoVyCoh,
= g Go V1 Go G 160 Gng As (22.0)
Ay CoVm CoAg = - g Co Ty Co Vo Go As (22.d)
m'<m
By defining
m A ~ o, ~ ~ -~
(w) = - ElAg Co T Co Vin-m+1C0 A (23)
m'=
all of (22) can be put in the form
Ay GoVene1GoAs = Dy, ,ym=0,1,2,... (24)

-~

Since the structure of I'; is the same for all 7n, the nature of the inversion for V.
in (24) does not change. If we can find V1 given Do we can find Vm...l given Dm But
can we find D ? From its definition, it is clear that finding D,,, amounts to collecting

a sum of terms of the form
~Ay Go Vni1Go Vanz """ VumGo As
It should also be clear that since 50 is calculable, these things are too, but as m

increases things are going to get very tedious. However, given a long, tranquil life span

and a large computer, 5,,; is in principle calculable.

There is no guarantee at this point that the power series expansions (20) for
T and V converge. However, assuming they do, and that at some level (m = M,Ssay) we
are satisfied with the result, this scheme has a very nice feature. At no point in the
computation did we need to know s(w). It enters only when we sum the series of
?ms‘"' to obtain V. This is quite handy, since we probably didn't know s(w) (very
well, anyway) at the outset. Given the 17,,, sequence, we are now at liberty to "decon-

volve'" the data, picking s(w) to yield the "best”- V.

~ e

5Well, we did need it to subtract § Ag Go As from D. However, that term, for a one-way Green's function, is
a direct arrival which would be flltered cut anyway.
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It is not likely that a full inversion by the 7'-matrix method will prove feasible. In
ﬁmv , each 17 acts as an effective source distributed over the volume of the earth, and
each Eg fft requires the equivalent of a volume integral to evaluate it. By contem-
porary standards, even in 2-D, the amount of computation required is prohibitive. Not
only that, but many terms in the series will likely be required if travel times need to be

adjusted, since in this case a polynomial is being used to approximate a phase.

The economics seem much more favorable, however, when we look at the problem
of surface multiple removal. For an earth with a reflecting surface, the 5,,, do several
things. They adjust propagation velocity, propagation and reflection amplitudes,
describe intra-bed multiples, and describe surface multiples. Unlike the other
phenomena, the surface multiples may be described by an effective source distributed

on the surface. Hence, each successive surface multiple in D,, requires only a surface

integral, which is more like it. Moreover, the series should converge relatively rapidly.

The 2-D Constant Velocity Background

To illustrate the ideas developed above, we look at the simple example of a 2-D
acoustic earth whose (flat) upper boundary is a free surface located at z = 0. The con-

stant parameter acoustic wave operator will be chosen for fo:

-~ LK 62 wa
Lg ™~ =+ ——5 + — 25
0 az? Bz ? 'ug (25)
The exploding Green’s function 50 associated with this operator satisfies
a* 8? w?
— + —— + 5 |Gelw.z.2.2') = -6(z)é(z-z 28
axz 622 g 0( 4 ) ( ) ( ) ( )

It is sometimes more convenient 6to express this equation in the k, representation

by Fourier transforming over z. Then

d® 2 N . _O(z=z
127 + ¢%|Go(w,kp,2,2') = (2m) /2 (27)
with
2
w
g° = Ve -kZ (=28)

i

The convention for Fourier transforms adopted here is F'(k )

(Zﬂ)"ﬂ]dxﬁ‘(z)e"“’
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which has the simple solution

gt |z =z |_e—iq|z-—s'1

—(2n)"*2iq

Co(w,ky,2,2') = (29)
The second exponent in (g, would not appear in free space. Here it provides the

reflections from the free surface at z = 0.

~

To keep things as simple as possible, the real wave operator L will be taken to be

the constant density acoustic operator

~ az 62 wz

o 0z®  8z*  v3(z,z) (30)
The corresponding potential
V=L~Lo"‘-;-a——?—1 = —2—0,(:::,2) (31)
oLV vo

is frequency dependent but local, with a single local parameter a{z,2z) embedded

therein.
The data we will assume to have been generated by sources at depth &, and geo-
phones at depth g;, so that the relevant elements of ﬁo have the form

< 2g,6, | Do) 26, > = s(w) < 2,6, |Co TCo | 25,65 > (32)

7
If we Fourier transform over z, and z, ., we get (provided T = 0 at depths less than
€y OT Eg)

sin gy &, sin gs&s

<ky.gy|Dg(w)lks.&s > = 2ns(w) <kgo=qy | T |ks.qs > (33)

g 5
where g, and g, are vertical spatial frequencies, constrained to satisfy

kg""'u é" k& i

2

kPvug
z

o
Vo

- W
Vo

9y = 1- 1- (34)

!qs

W [}

7We use the physicista convention in which Fourier transforms of the parameters on the right hand side of an
operator are taken with opposite sign (in the exponent) to those on the left; i.e.

-~ _ 1 -~ ik, z, <k & )
<ky,eg|Do l kg, 6> = Efdx” fda:,, <xg,sy|Do |2y, 65> e °2 0

We also use the rather sloppy convention of replacing a coordinate by its spatial frequency in an expression,
leaving the,_ functional form intact, to indicate a Fourier treansform. Thus the _expression
< ky.,—qg | T |ks.gs > on the RH.S. of (33) is a quadruple Fourier transform of < Ty.%y | T |zs.2s >.
Equation (33) can almost be written down by inspection - however, a short derivation is included in an appen-
dix.
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The quantity in brackets in (33) is the "on-shell" T-matrix, so called because the only

elements which appear are those such that

n

[
kyz + qga = ksa + QBa = ';}"'2_ (35)
0

~

By expanding T and V as a power series in s™!

according to equation (20), we

get the following series of equations

- _ _1__ 9y 9s N
<kg.—qg | V1 |ks.gs> = 2r Sin g, Smgucs <kg.eg|Do (w)|ks.E5> (38.a)

< k,.sg | Dy (W) | ksi8s > = =< ’Cg.89|Co ViGo Vy Gy |kg.8g >

=27 sin gy &, Sin gg & ~ A
= 955 95 s <Icy.-qs [ Vi GoVy |ks.q,> (BG.b)
9y 9s
- 1 q q o~
<ka-“‘Ig|Va ks qs> = = £ . <kﬂ'89}01(m)|ksvss>

2m sin g &, sin gg&,
= —<kp—qy|ViGoVy [ksiqe > (36.c)
<ky,Eg ]52 (m)|lcs,£s> = - <kg,£g Iéo [ﬁl 50 f;g +I:;a 60 I?1 +‘V\1 60 ﬁi 50 f;l ]50 kg, 84>

—27 SIN Ga &y 5N Qe £ ~m m m m m mom m m m
= ;Ig qg 9s%s <k9 v~ qy [ [V1 GoVa+VaGoVi+Vy Gy ViGo Vy ]|Ic,,qs>
g s

(36.d)
<kg.=qq | V3 |ks.qs> = <ky.—q, | [Vl CoVa+VaGo Vi +V 1 GoViGoVy ][’Cs-qs> (36.¢)

etc.

The full calculation of the elements of 51 , 52 , ete. in equations (36.b), (36.d),

ete. requires an evaluation of terms of the form
<ky=q | VisCo ViaCo -+ Go Vin | ks.9s>

For every 60 in this expression a double integration (over » and 2z or k, and k, ) is
required. Even for this simple 2-D example, the amount of computation required is for-

midable.

Suppose, however, that the only important contributors to this term are the sur-
face multiples. We can then evaluate this expression with a single integral for each 60 .

We have
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~ o~ o~ ~ o~ man e—uyzl"'wyzl
<ky-_Qg|ViIGO Viz"'Gon]ks,qs>=fdx1“'dxnfdzl"'dzn 'Uan .
4]
‘a1 (T1.21)Co(w. 21~ 2 1.2 2)a42(T2.22) * * * Colw.Tp—1=Tp . Zn-1.2n )
thyzy, +ig, 2,
' z .
ain.( niZn) -

The n integrals over z can be replaced by n—1 integrals over k, by decomposing each

(g as a Fourier transform
- 1 kg (g =2y 4)
Go(w,xj-xj+1,2j.2j+1) = (2—11')77’; fdkj e 1¥IT5IT Go(w.kijj.Zj+l)
and noting that the z integrals affect Fourier transforms of each ay:

P " ~ o~ 1
<kg,"qg | ViIGO V?'.EGO v Gg Vin[kS!QS> = fdkl e dkn_lfdzl v dZnW'
CJE iqysl
"B € ag1{ky—k1,21)C o,k 1,2 1,22) a4k 1~k 2,2 2)C o,k 2,22, 23)

0,2y

e GO(W-kn—l-zn—l-zn)a'in(kn—l"ks-zn)e (37)

Gg is given by equation (29). However, only the second exponent in (28) involves the

free surface reflection. Neglecting the first exponent we get

2n) 1 n-1

<kyi=ay | VirGo PiaCo -+ - Co Vin | kerge> ~ Lo dzy- - dz

9.~ 95 | Vi1Go ViaGo 0 Vin | ks,qs B (2i)] f 71 P f 1 n
'eiq"zlau(kg‘k1-21)9“1(’1“2)“12(161“162.22)91[92(22”3)' - gln-alEnaten)

gy2,

i, (kn—l—ks 1Zn )e
The z integrals are also just Fourier transforms of the a's, so

man
2n .
vg™ (i

oa s P 1 1 dk
<kg.—qg | Vi1Go VizGyo '~ Co Vin | ks, ge> = (2n) = f qll ait(ky—k1.~q;~q1)

dk g dkn A dkp -1
N ﬂia(ki‘kz-‘91-Q2)f‘*““ tia(kz~ka,~ge—gqa) " f_““n :
9z 9a In-1

Qi —1{kn—2=Fn— 1.~ Gn -2~ ) G (kp— 1=k . =Gn-1— s ) (38)

Thus, under these circumstances ﬁm can be evaluated with a single integral per Eo .

It is hard to imagine a case where this simple constant background velocity model

would be directly useful. Perhaps a slight modification could render it applicable to



132

the removal of deep water bottom multiples. To be generally useful, however, the

model should be reformulated with a variable background velocity.
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APPENDIX

Derivation of the "On Shell’ T Matrix Equation

The right hand side of equation {32) can be expanded as a quadruple integral over
z and z, yielding

<Tg.Egy Iﬁo(w)lzs.ss> = s{w) fdz:ld:czfdzldzacg(w.xy -T1.€5.21)
-<$1,21|f1$2,22> Gg(w.xg—xs.za,ss) (Al)

The z integrals are in fact convolutions, hence can be eliminated by Fourier transform-

ing over z, and z;. We get
<ky.&, |§o(w) lkg.es> = s{w)(Bm) fdz 142G o(w.ky.84.21)
<kg.z1| T kg, 22>Colw.ks 2285 (A.2)
Another form of equation (29) for G is

sin gz«

Colbd:z:) = Camyrag

elez> (A.3)

where z.(z¢) is the larger {smaller) of z and z’'. Thus, if <kg,z1|f|k,,zg> # 0 only
when z{ >g, and 2z > & (from the definition of f it should be clear that this amounts
to requiring that velocity be constant {a = 0) above g, or &, the equation (A.2)

becomes

sin g &, sin g, &,

<k9,sg|5°(w)]k,.ss> = s(w) fdzldza-
dg gs
.e"%1 <k9,z1|f|ks,z2> g'9s%2 (A.4)

The z integrals are now recognizable as Fourier transforms. With the sign and ampli-

tude conventions in use here, we have, in fact, equation (33).



