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Inversion of Refracted Free-Surface Multiples By
Wavefield Continuation

Robert W. Clayton and George A. McMechan'®

Summary

The inversion scheme for refraction data presented SEP-24 by Clayton and
McMechan is easily extendable to free-surface multiples. The extension is based on the
property that the first-order free-surface multiple has twice the T of the corresponding
primary, for a given ray parameter. It is implemented in the inversion algorithm by
simply doubling the frequency. The analysis of the multiples allows an independent

check on the inversion using primaries, and on the assumption of lateral homogenity.

Introduction

In SEP-24, Clayton and McMechan, presented a method for directly inverting
refraction profiles that are well-sampled spatially. The method consists of transform-
ing the entire recorded wavefield into the slowness-depth domain where the velocity

profile can be picked directly.

The first step in the method is a slant stack of the recorded wavefield (Schultz and
Claerbout, 1978; Chapman, 1978; McMechan and Ottolini, 1980; and Chapman, 1980).
For arrivals beyond the critical angle, slant stacking unravels the triplications of the
travel time curve into a single monotonic curve (the T-curve). The slant stack transfor-

mation is linear and invertable.

The next step is a downward continuation to convert the slant stack in
(p,7)-space into the slowness plane in {p,z)~space. The slowness plane is the plane
that contains the turning points of the rays. The velocity-depth curve is then picked
from this plane. The last step is iterative because it is necessary to specify the velocity

for the continuation. Convergence is determined when the picked velocity curve is the
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same as the velocity model input to the downward continuation. In the examples given

in SEP-24, the convergence was rapid and completely stable.

The method outlined above was directed towards primary events only. The free
surface refracted multiples form a false image in the slowness plane that falls below
the true velocity-depth curve. However, with a very minor change in the inversion algo-
rithm, the multiples can also be made to form the correct velocity-depth image. In

this case the primaries form a false image above the true velocity curve.

Theory

The downward continuation in the inversion scheme is implement with the equa-

tion [equation (9) from SEP-24, with a slight change in notation]
s{p,z) = f S{w,p) e tebp2)g (1)
where

1/2
v73(z) - p?| dz

d(p.z) = 2‘{

In this equation s(p,z) is the slowness plane, p is the ray parameter, S(w,p) is the
Fourier transform of the slant stack of the recorded wavefield, and v(z) is the

velocity-depth function.

The phase rotation @, that is used in the continuation, may be related to v by

®p.z)= 7(p) (2)
where it is understood that z refers to the turning point of the ray.

In a laterally homogeneous earth [which equation (1) assumes] the first-order mul-
tiples have twice the T of the corresponding primaries, for a given ray parameter.

Hence, the appropriate phase rotation to image the multiples is

wd(wp.z)=2w T(p) = Rw ®(p.z) (3)

Thus, the phase rotation for multiples can be implemented in equation (1) by simply
doubling the frequency. This will cause the primary arrivals to form a false image
above the true image. For second-order multiples the frequency would be tripled in

equation (1), and so forth.

One further point that needs to be discussed, is the phase shift to be applied to

the multiple image. For primaries, a frequency-independent phase shift of ~5n,/4 to



117

p (sec/km)
Q0 ny .]Oies. 020
-9 |
E'
3 'mm
NG
3 i
o \
22l "~ 3.0 3.5 4.0  4J5 5.0 5.586.0
v (km/sec)
p (sec/km)
g 0?’3’“?3??*23
K IR AT j}t } 3 2;
- 1l i {{dill LLL{f[[ﬁ i H} \:?Jjjl‘j%[;&ﬂég
@ 3 nl Y
- 1L LL“LL;L g . U
o i
. i
_2: %}: .m;ﬁ‘% )

2's 3.0 3.5 4.0 415 &0 556.0
v (km/sec)

FIG. 1. A synthetic example of free-surface multiple inversion. The upper panel shows
the inversion based on primary arrivals. The solid curve shows the velocity model used
to generate the synthetics. The multiples form a false image below the true curve. In
the lower panel, the inversion with the multiples is shown, and in this case the pri-
maries form a false image above the true curve. The multiple image does not span the
same depth range as the primary inversion because the slant stack was truncated in T.

the slowness plane before the velocity curve was picked. This accounted for the
"reflection coefficient” of refracted waves —-i sgnw (a w2 phase shift), and a w4
phase shift that occurs in converting a line source to a point source. Chapman (1980)
has pointed out that the correct phase shifts are frequency dependent, but we will
assume that the static phase shifts are sufficient for bandlimited data. For the first

multiples we have applied a phase shift of ~7n4 which accounts for the caustic and
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for the free-surface reflection coefficient.
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FIG. 2. A real example of free-surface multiple inversion. The data set is a dense
refraction profile recorded in the Imperial Valley, California (see SEP-24 for details).
The upper panel shows the inversion based on primaries, while the lower panel shows
the inversion based on primaries. The solid line in each case is the velocity used in the
downward continuation. The multiple inversion conforms the primary inversion in the

depth range 0.25-2.0 Km, and also confirms the assumption of lateral homogeneity in
that range.
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Examples

The imaging of the multiples is illustrated with a synthetic and a real example.
The synthetic is taken from SEP-24 (figure 5) In Figure la, the image of the primary is
shown in the correct position, while the multiple false image of the first multiple
appears at a greater depth. In these figures the solid curve shows the input velocity,

which in this case is the same as the velocity function used to generate the synthetics.

In figure (1b), the frequency in the continuation algorithm was doubled. Now the
multiple forms the true image, while the primary forms a false image at a shallower
depth. The "event" in the lower left corner is due to wrap around. The multiple image

does not span the full velocity-depth curve, because the slant stack is truncated in .

Figure (2) contains a real example from the Imperial Valley in California. The
final inversion of the primary data, which is taken from SEP-24 is shown in Figure (2a).
Figure (2b) shows the inversion for the first multiple. It confirms the inversion in the
region from 0.25 Km to 2 Km. The fact that it also produces the same velocity-depth

curve confirms the assumption of lateral homogenity in that range.

Conclusions

Refracted free-surface multiples can be inverted by the same procedure that
inverts the primaries. This is useful for confirming both the primary-arrival inversion,

and the assumption of lateral homogenity.
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