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ANALYSIS OF DISPERSIVE WAVES BY WAVE-FIELD
TRANSFORMATION

George A. McMechan and Mathew J. Yedlin

Abstract

The dispersive waves in a common-shot wave field can be transformed into images
of the dispersion curves of each mode in the data. The procedure consists of two linear
transformations: a slant stack of the data produces a wave field in the phase slowness-
time intercept (p-r) plane, in which phase velocities are separated; the spectral peak
of the one-dimensional Fourier transform of the p-r wave field then gives the frequency
associated with each phase velocity. Thus, the data wave field is linearly transformed
from the time-distance domain into the slowness-frequency (p-w) domain, where
dispersion curves are imaged. All the data are present throughout the transforma-
tions. Dispersion curves for the mode overtones as well as the fundamental are
directly observed in the transformed wave field. In the p-w domain, each mode is
separated from the others even when its presence is not visually detectable in the
untransformed data. The resolution achieved in the result is indicated in the p-w wave
field by the width and coherence of the image. The method is applied to both synthetic

and real datasets.

Introduction

Surface-wave data are conventionally analyzed by treating small subsets (typically
pairs of traces) of the observations (cf. Dziewonski and Hales, 1972). In this paper we
develop an alternate approach to surface-wave analysis that consists of transforming
the entire data wave field into the slowness-frequency (p-w) domain where the disper-
sion curve can be directly picked. The process involves two linear transformations: a

slant stack followed by a one-dimensional Fourier transform.
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Examples of the processing of wave fields by slant stacking have been presented
by McMechan and Ottolini (1980), Clayton and McMechan (1980), Phinney et al. (1980)
and Stoffa et al. (1980). The result of this transformation is a wave field in the ray
parameter-time intercept (p-r) plane. The second transformation required is & one-

dimensional Fourier transform over 7.

The wave-field transformation approach to data processing has the advantage that
all the data contribute to the final image; there is no subjective selection of data (e.g.
by picking of peaks and troughs or by frequency windowing) as is involved in conven-
tional methods. In theory, since both the Fourier transform and slant stacking are
reversible transformations, this approach could potentially be used to generate a syn-
thetic surface-wave profile from characteristics of propagation specified in the p-w
plane. (This would require using the complex Fourier coeflicients rather than just

amplitudes as we do here for the inverse problem.)

In this paper we present the theory for the extraction of a dispersion curve from a
common-shot wave field by a double transformation of the data. The method is illus-

trated with several synthetic examples and with two marine common-shot gathers.

Theory

The technique used to obtain the image of the dispersion curve from a wave field
relies on the spectral decomposition of that wave field. To determine the transforma-
tion required to image the dispersion relation from the wave field, we begin with its
frequency-wavenumber representation (Chapman, 1978),

Viz.t)= [ dk [ do e‘(kz-“‘)#%g)l (1)

where x is offset, t is traveltime, k is wavenumber, N(k,w) is a function of the source
excitation, and D(k,w) is the dispersion relation. Equation (1) is completely general,
with no assumptions made about the nature of the wave field. Now, we apply a slant

stack operator to both sides of (1) to get

Up.t) = fda; V(z,m+pz) =fd:c fdlc fdwel[kz-w('r+pz)] g;:c ;J)) (2)

Integration of the x integral yields (¥ —wp ). Thus,

U(p,r)=fdkfdme-wf%{k—)la(k wp) (3)

Equation (3) describes a transformation of the original wave field, and has a very
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simple interpretation when the medium is horizontally stratified (Clayton and

McMechan, 1980). Performing the wavenumber integration in (3), we obtain

Ulp,m) = fdo e"f"’ﬂm (4)

D (wp,w)
Finally, application of a Fourier transform over T yields

N(wp,w)

Ulp.w) = D(op o) (5)

In the wave field U(p,w) there will be a set of points that satisfies the dispersion relation
[D(wp,w)=0]. On this locus, U{p,») becomes infinite. Thus, the p-w locus corresponding
to the largest values in the U{p,w) wave field is exactly the dispersion curve that we

seek.

Synthetic Examples

In order to investigate the performance of wave-field transformations applied to
imaging dispersive waves, we processed a number of synthetic examples for which the
results could be verified. One of these is shown in figures 1 and 2. Figure la contains a
synthetic Love-wave profile computed for the single layer over a half-space model
which is shown in figure 1b. Only the fundamental mode was included. The two transfor-

mations involved in imaging the dispersion relation are shown in figure 2.

Figure 2a contains the slant stack of the wave field in figure 1a. The p-t wave field
contains the same information as do the original data, but it is now decomposed into
elements of equal phase velocity v (p=1/v). In the p-7 wave field (figure 2a), the disper-
sive nature of the data is clearly evident in the frequency content of the traces. The
frequency becomes lower with decreasing p (increasing v). The slant stack introduces a
phase distortion of the data (Chapman, 1978), but no frequency shift. Thus, the ampli-
tude spectrum of the trace at a given p is identical to that associated with the
corresponding phase velocity in the original data. The amplitude spectrum of each
trace in figure 2a is plotted in figure 2b. The trajectory composed of spectral peaks
should be the image of the dispersion curve for the model in figure 1b. For comparison,

the correct dispersion curve is plotted in figure 2c.

A more complicated example is presented in figures 3 and 4. A synthetic Love-wave
profile containing the fundamental and the first two higher modes was computed for
the model in figure 1b. This wave field is shown in figure 3. The "shingling" of phase

velocity loci oblique to the main (group velocity) trajectory, a characteristic of
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FIG. 1. Synthetic seismograms (a) for Love waves in a model consisting of a layer over
a half-space {b). These seismograms contain only the fundamental mode. Dispersion
can be seen clearly at the near offsets where the lowest frequencies arrive earliest. The
extraction of the dispersion curve from these data is presented in figure 2.
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FIG. 2. The fundamental mode data in figure la were slant stacked to produce the p-T
wave field in (a). A one-dimensional Fourier transform (over ) of the p-T wave field pro-
duces an image in the p-w domain (b) which corresponds to the dispersion curve. For
comparison, the analytic dispersion curve is shown in (c). The data interval is 0.07s.
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FIG. 3. Synthetic seismograms for Love waves in a model consisting of a layer over a
half-space. These seismograms contain the fundamental mode and the first two over-
tones, although only the low frequency, high-amplitude fundamental is obvious. The
procedure described in this paper can be used to detect all three modes and to find
the dispersion curve of each. The results obtained by processing this seismogram
profile are shown in figure 4.

dispersed wave trains, is clear in the data wave field. (The real data profiles in figure 5
also exhibit this effect.)

Figure 4a contains the p-w transformation of the synthetic data profile in figure 3.
In this wave field each of the three modes forms a separate, well-defined image. A com-
parison of the images with their expected positions, as given in figure 4b, indicates that
they are correctly located. Some interesting features of the p-w wave field (figure 4a)
are the spectral holes labeled 1, 2 and 3. These holes are at the same frequency in each

of the three dispersion curves. This is a source effect. The time source function used is
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FIG. 4. Mode detection by wave-field transformation. The left (a) half of this figure
shows the three images obtained by a Fourier transform of the slant stack of the
seismograms in figure 3. Each image contains contributions from one entire mode in
the data. The uppermost image is the fundamental mode; the lower two are the first
two overtones. For comparison, the positions of the dispersion curves as determined
analvtically are shown in the left {(b) half of the fipure. The data interval is 0.04s.
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a triangle, which has a sinc®(w) behavior in frequency. The spectral holes correspond to
the zeros of the sinc?(w) function. Another way to think of this is that we are obtaining
an image of N/D [equation (5)]. To find the image of D alone, the contribution of N must

be deconvolved out.

The results obtained in the analysis of synthetic examples of dispersion, by double
transformation of the data wave field, motivated a practical application. The processing

of some real marine data is presented below.

Application to Marine Data

In this section we present two examples of the extraction of dispersion curves
from recorded marine data. The two data profiles are shown in figure 5. The p-T and p-w
transformations of the wave field in figure 5a are shown in figure 6, and those of the
wave field in figure 5b are shown in figure 7. Both datasets produce coherent p-w
images. Because the data are recorded in a marine environment, we expect that the
dispersed wave trains are Rayleigh-like waves. Note, however, that it is not necessary to
make any assumptions about the wave type in order to extract the dispersion [see
equation 5]. Each dispersed wave train present in a dataset will produce an image in
the p-w domain regardless of propagation characteristics, mode number, or whether

its presence in the data is known a priori (see figure 4).

In figure 7c the dispersion curves obtained from both real datasets are shown.
These curves are the loci of maximurm spectral amplitude extracted from the p-w wave
fields in figures 6b and 7b. The uncertainty in these loci is indicated by the width and
coherence of the p-w images. An explicit estimate of uncertainty could be obtained by
treating the spectral peak at each phase velocity as a probability density function. In
the present case, it is clear that the two dispersion curves are separated; the phase
velocities in the second dataset (the solid line in figure 7c¢) are consistently higher than
those in the first (the dotted line).

Comments on Implementation

Although the basic concepts are straightforward, there are a number of practical
points to consider in dispersion analysis by wave-field transformations. One particularly’
important one is that the sampling rates in both time and offset must be sufficiently
high to avoid aliasing. In order to obtain an unaliased slant stack of a surface-wave

train, the sampling rate in the offset coordinate must be greater than required for an
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unaliased stack of the body waves in the same profile, because the velocity of surface
waves is even less than that of the S-waves. Additional considerations in slant stacking
are discussed by McMechan and Ottolini (1980).

The w-extent of a p-w image is restricted to the band-pass of the recording instru-
ments combined with all other filtering procedures that have been applied to the data.

Thus, it is desirable that the data be retained in as broadband a format as possible.

One obvious application of the results of this study is to provide an alternative to
w-k pie-slice filtering for the removal of dispersive waves from common-shot gathers.
The shape of the required filter for any mode of any dispersed wave train is defined by
the corresponding p-w image. The filter can be applied in the p-o domain. An inverse
Fourier transform of the (complex) p-w image followed by an inverse slant stack should
preduce a reconstructed time-offset profile with the dispersive waves removed.
Another possible extension is the migration of the p-w image to produce a velocity-
depth profile directly via the application of the results of Takahashi (1955), as suggest-
ed by Clayton and McMechan (1980). These applications are currently being investigat-
ed

Conclusions

In this paper we have demonstrated a wave-field transformation method for
analysis of dispersed wave trains. The process consists of two linear transformations. A
slant stack decomposes the data wave field into elements of constant phase velocity.
The frequency associated with each phase velocity is then obtained by a one-
dimensional Fourier transform. The main advantages of the method are that the entire
wave field is present throughout both transformations and that the desired feature (the
dispersion curve) is extracted directly from its image in the transformed wave field.

The method has been used to analyze a pair of common-shot marine profiles.
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