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SUPPRESSION OF HARD-BOTTOM MARINE MULTIPLES
WITH THE WAVE EQUATION

Larry Morley

Conventional techniques for multiple suppression on deep water data discriminate
against multiples on the basis of velocity. This approach is quite successful in attenuat-
ing water bottomn multiples because the water velocity is both well known and quite dis-
tinet from primary velocities. It fails, however, to suppress pegleg multiples whose
velocities seldom satisfy either of these conditions. The removal of these multiples

requires a "wave-predictive” approach.

In any area with a hard-bottom multiple problem the free surface, sea bottom, and
sedimentary reflectors are of order 1, ¢, and c® respectively. The multiples which
cause interpreters the most trouble are the visible ones (of order c¢? and ¢?). Our goal
will be to eliminate all sea bottom multiples and all pegleg multiples that have under-
gone only one subsurface bounce. If this goal is attained then all multiples to at least

order c? will have been suppressed.

Our general approach will be to use the wave equation to generate seafloor rever-
beration models from the observed surface data and then subtract these models from
the data in some statistically optimal sense. Confining our attention to this subset of
surface multiples has several advantages over schemes which attempt to remove all
surface multiples. The most important one is that we need make no more than two
subtractions from our original dataset to obtain a multiple free section. One of these
subtractions corresponds to the removal of shot-associated reverberations - the other
to removal of geophone reverberations. A minimal number of subtractions will ensure
that the degradation of signal to noise remains tolerable. This is in contrast with algo-
rithms (e.g., FGDP-p.257) which call for a subtraction of downgoing waves from upcom-

ing waves at all depth levels in the section.
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A second advantage in dealing with this class of multiples is that multiple models
can be generated without having to downward continue the surface data past the
seafloor. All wavefield extrapolation can be confined to the water layer where the velo-
city is constant and well known. Continuation 6f the data to any significant depth past
the seafloor would result only in the prediction of multiples of O(c*). Such attempts are
sure to be frustrated by poor knowledge of the velocity and attenuation structure of
the sedimentary section. Too, the absence of transmission and absorption effects in

the water layer makes true amplitude processing feasible.

Heuristic Development of the Multiple Dereverberation Operator
The classical 1-D approach to deconvolving a water-confined reverberation spike
train uses the Backus "3-point' operator (Backus,'59). The assumption is that a rever-
beration given by
- i 1
R(z) = -z = ———— 1
( ) ‘Z:o( ) 1+CZ" ( )
filters the primary seismogram twice prior to observation — once as the seismic energy
passes through the sea-bottom to the deeper strata and a second time on return to the

surface. The reflection coeflicient at the sea-bottom is ¢ and n is the two-way travel-

time of the water layer in time fiducials. The three-point dereverberation operator is
thus

(1+cz™)® = 1+2cz™+c22?" (2)

This analysis ignores the fact that both water depth and seafloor reflectivity are

distinct functions of shot and geophone locations (figure 1).

To motivate this discussion we’ll write equation (2) as:

(1+cz™)® = (1+cz™)(1+cz™) = (1+2™ 2cz™ ) (1+2" %cz™?) (3)

We can think of one of these brackets as zeroing the reverberations associated
with the shots and the other as a filter cancelling geophone reverberations. In the more
general case we are not dealing entirely with vertical plane waves. Plane wave com-

ponents with non-zero stepouts undergo a smaller delay proportional to the cosine of
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FIG. 1. Water depth and seafloor reflectivity are functions of shot and geophone loca-
tion. The Backus operator makes no allowance for this.

their dip. Taking our cue from equation (3), we expect a more general dereverberation

operator to be of the form:
D=(1+LscLgY(1+LycLy) (4)
Ls and L, are the linear operators which extrapolate the wavefield from one datum to
another in either shot or geophone coordinates.!
The relative order of the L, and L, brackets is of no importance since s and g are
independent variables. i.e.

D = (1+L cL, Y(1+LgcLy) (5)

is equally valid.

To be rigorous we should differentiate between the L, operator which takes shots from the free surface to
the seafloor and the operator which returns the shot wavefleld from the seafloor to the free surface. These
operators only coincide when the seafloor is flat. There is a similar ambiguity in the definition of Lg. Equa-
tions (4) and (5) and all future references to L, and L, should be interpreted with this in mind.
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Equation (4) is the wave equation dereverberation operator consistent with
the philosophy of the 3-point operator. (i.e.- The notion that the only important multi-
ples are those which arise from interactions between the primary reflectors and the
seafloor.) It contains two quantities that we will need to approximate - the wave extra-
polators and the seafloor reflection coefficients. Almost any approximation to Ly or L,
is an improvement over z™?, The 'reflection coefficients” are an empirical set of
parameters that will have to account for a number of very complex effects including
elastic reflections, intra-bed multiples within the first few hundred meters of sediment
and 3-D effects. In this author's opinion, previous attempts to suppress multiples with
the wave equation emphasized approximations to Ls; and L, below the seafloor and
failed to adequately treat the seafloor reflection. Since the ¢’s are, in general, a func-
tion of space, they will not necessarily commute with L, and L, (see appendix A).
Hopefully, however, they will be relatively local in time and space. Experience has
shown that the seafloor region cannot be modelled as a medium in which transmission
effects are negligible. Only experimentation can decide how it is best parameterized

but a statistical approach is almost certainly in order.

Offset Extension of Backus Operator (Zero-Dip Case)

The first real extension of the Backus operator is to increased offsets. Such an
extension has been made by the authors of WEMUL? (Lerat, Tariel, and Fourmann, '79).
This program generates a multiple model for each CDP gather by diffracting the sur-
face data through a double water layer. To do this each midpoint gather 1s
transformed to the w—k, domain, phase delayed by the diffraction operator
exp (21 mrx/m) and transformed back to h—t space. (7 is the one way vertical
watertime at the CDP in question and k;, is the Fourier dual of full offset, h). The result-
ing model is then subtracted by adaptive least squares from the data either before or

after stack to yield a "multiple-free" product.

Extensions beyond WEMUL depend on whether one feels that structural dip or vari-
ation in the seafloor reflection coefficients are more important. In this section we will

examine the problem of multiple suppression on data with small dips but variable

"WEMUL" - CGG trademark
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seafloor reflectivity. This problem deserves consideration from both a theoretical and
a practical standpoint. WEMUL, at present, has no concept of an underlying physical
model of seafloor reflectivity. The following theory clears up some of the uncertainty
on this point. From the practical side, we expect that implementing this (relatively
cheap) algorithm will reveal whether variable seafloor reflectivity or dip are to blame

for most of our present woes.

Figure (2) explains the basic concepts. Our observed dataset is given as a surface
wavefield downgoing in shot and upcoming in geophone coordinates. Our goal (figure
2a) is to obtain a downgoing shot and upcoming receiver wavefield just below the
seafloor. This will be done through the process of downward continuation and applica-

tion of the seafloor boundary condition:

Q = (_fg = Eyb—g |z=seuj’loo'r (6)

A N—
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FIG. 2a. Objective wavefield consists of downgoing shot and upcoming receiver both
below the seafloor.
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In equation {B) ﬁg and [f are the upcoming geophone wavefields above and below
the seafloor respectively. The seafloor reflectivity filter, 39, is estimated by minimizing

the power in [J over a time gate where multiple energy is expected to dominate.

In migration, it suffices to consider the operators +(v1-8%++v1-G?). In this prob-
lem it is also of interest to consider the operators +(V1 ~ S2-V1-G?) = +HY. Physi-

cally these operators denote the wavefields of frames (2) and (3) in figure 2(b). They
vanish for either 0 dip (our present assumption) or 0 offset angle. They are important

only when large water depth or dip become a consideration.

(1) (2)
sy 73 sy \4
"R Ne-op

(3) (4)
sf749 sp &9
No-op +2 1=y

FIG. 2b. The four operators obtained by varying signs in +{(v'1-52+V1-(2) for 0 dip.

Implementation

It is desirable to apply our wave operators in midpoint - offset (y-h) space. There
are two reasons for this. The most important one is that trunecation and aliasing
artifacts are much less severe in (y-h) than in (s-g) space. A second reason is that

operations in (y-h) space mesh better with standard data processing procedures.
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The proposed algorithm for 0 dip is explained in figure (2c). The basic steps are:

I) Downward continue the surface data with operators (3) and (4) of figure (2b)
to the seafloor and apply the shaper filter (6) to all geophone locations. Ideally, this
yields a collection of data consisting of an upcoming shot wavefield just above the
seafloor and an upcoming geophone wavefield just below. We’ll denote this situation by
(Us.1§)-

II) Interchange shots and geophones, upcoming and downgoing waves, and
reverse time. This is equivalent to a formal statement of reciprocity. Our wavefield is
now (Eg ).

II) Upward continue the configuration of (II) to the seafloor. This is merely a

conceptual (i.e. no-operation) step. The "x" across the "S" field indicates that this is

now a "multiple-free"” wavefield.
IV) Apply the boundary condition Uy = =Dy at z=0.

V) Downward continue the wavefields from steps 'III' and ‘IV’. This is done with
operators (3) and (4) of figure (2b). The sign on the V1-H¢? operator is positive since
time is reversed. A final application of equation (8) gives us our objective wavefield
(figure 2a).

In practice the proposed algorithm consists of two 0-dip diffractions of the com-
mon midpoint gathers, each followed by a least squares fitting procedure (figure 3).
The first fit is done over common geophone or shot gathers. The second fit is done over
the remaining coordinate. It may be necessary to allow the seafloor reflectivity to vary

with offset. This question, however, is best left to experiment.

Proposed Method for Non-Zero Dip

We have just outlined a strategy for multiple suppression which requires small dips
but accurately accounts for variation in seafloor reflectivity. When dip or water depth
is large, we must return to our original form for the dereverberation operator {equa-
tions 4 and 5). It is again desirable to work in (y-h) space. In order to implement L,
and Ly in this space we have to think about representations for the differential opera-

tors (1-(Y +H)*)!“2. An appropriate expansion is

(1-(Y+H)®)® = V1-H?*(14 1{_{;2 - 2(1_}_’;{2)2 +..)= \/Ff—f—é-'f- ““_—“%—2_ T (7)

Using a stationary phase approximation (Yilmaz, '79), we can approximate H in the

second term of the final expression by f}z% In migration, the double square root
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FIG. (2c). Conceptual steps in the 0-dip algorithm.
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.operator 1s used and the first order terms in Y are self-cancelling. Here we neglect the
term in Y2 The term in Y represents a shift in midpoint coordinates whose sign
depends on whether we are continuing shots or geophones. Its magnitude depends sim-
pPly on the depth of the seafloor and the ratio of offset to time. It will be more con-
venient to apply the shift after the V1-H? operator in order to minimize truncation

effects. This is permissible since the operators in (7) are entirely commutative.

NP 7y

6 <o

FIG. 3. The correlation between upcoming and downgoing wavefields at the seafloor is
removed from the upcomng wave for each common geophone location {1). Residual
correlation common to shot locations is then removed (2).

Summary

The Backus operator provides a useful base for developing a general strategy for
hard water bottormn multiple suppression. This paper has presented the form that a gen-
eral water layer dereverberation operator must take. The generalization is necessary

to account for

(1) non zero offsets
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() variable depth and reflectivity of the seafloor, and
(3) the effects of structural dip.

For the limit of zero dip but variable seafloor we argued that an approach - algo-
rithmically reminiscent of WEMUL - but with a very different physical interpretation
shows promise. This algorithm is now being implemented. For the third level of com-

plexity a stationary phase approach is advocated to split shot and geophone peglegs.
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APPENDIX

(A) Once More (with rigour)

The main thing that will emerge from a rigorous derivation of (4) is a clear
statement of why ¢ does not necessarily commute with L; or L,. Consider how one
would predict "geophone" multiples from a common shot gather. Figure (Al) depicts
the basic situation. The total pressure field, P, in the water is the sum of an upcoming
wave, U, and a downgoing wave, J. Boundary conditions are that U=-0 at z=0 and

U=cD at the seafloor, 2=z, (y). Decompose U and D into a sequence of reverberatory

components U; and Dy with U = },U; and D = 3 D,.
i=o '

t=0
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FIG. (A1). Decomposition of upcoming and downgoing pressure field in water layer.
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Using the relations:

Us_ilz=0==Dy | y=0 Di|z=zf=LgDi [e=0 (A1)
Ui |z=zf=CDi |z=z, Ui'[z=0=Lg Uy ‘z=zf (A2)
gives
Uy = =LycLyUimyand U | =0 = fj(—L cLy Y Ug|z=0 = _ Uole=o (A3)
* it Al 2= =1 =g 2= (1+Lchg)

Thus the wavefield, Ugl,=q = (1+L,¢L,)U | ;=0 is the total upcoming wavefield at the sur-
face stripped of geophone reverberations. To suppress the shot reverberations we

appeal to symmetry and reobtain the dereverberation operator of equation (4).

(B) A Scattering Theory Interpretation

We assume that the Born expansion (see Clayton - SEP 24, '80) for the observed
data, D, can be approximated by:
D=3 SGoVG V)GV (VE VG o) (B1)
1=05=0
The term "GVG" in the centre of the expansion denotes the primary observations
at the sea surface. V = —1 is the free surface potential. Gy is the constant velocity
Green's function for propagation in water. The "0" subscript emphasizes that - unlike G

- this is a known Green's function. 17 is a potential which is assumed to have support

only in the vicinity of the seafloor. It is estimated from the data by solving the problem

mjn| (DG~ 1-DVCV | |2 (B2)
Now define
D1=(DCy1=DVC V) (B3)

Note that if I7 has been correctly estimated, then

D1=Y (G VG V) GVE (B4)
TG
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We now find
Da=Go(Go='D = VG VD )=(1-G VGV )D4 (B5)

=GVGE .



