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EXAMPLES OF WIDE-ANGLE WAVE-EQUATION MODELING

Bert Jacobs

Abstract

A generalized phase-shift method is used to generate one-way wave-equation
models in a variable velocity medium. The small-dip and derivative approximations

used in finite-difference algorithms are not employed by the new procedure.

Introduction

In the phase-shift method for solving the one-way wave-equation the wavefield at
one z-level is multiplied by a phase factor to obtain the field at the next z-level. We
can generalize this by decomposing the wavefield into eigenvector components. Each

component may then be independently projected with an appropriate phase shift.

In generalizing phase-shift techniques so that they handle variable- velocity media,
we obtain a method for generating high accuracy synthetics which can be compared

with the output of more economical production programs.

Theoretical Background

Starting with the two-dimensional, monochromatie, constant density wave equa-
tion, we take appropriate Fourier transforms and discretize the transformed wave
equation. The discretization leads to an eigenvalue problem for a Hermitian matrix.
The eigenvalues and eigenvectors will be used in projecting the wavefield from z-level

to z-level.

The wave equation is

ik >
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With Fourier transform definitions
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an upgoing wave will be of the form e R if p, and w take the same sign.

Taking Fourier transforms over all variables in equation 1 we get

W(p,.z) = 7(.;_15 Z, dz v=¥z.z) ¢ P* (2)

_pz U (pz.2, CJ)+ \/‘2 ) fdpz W (ps -Pz'\% )u(pz’-z-w) = pzau(pz-z-w) 3

The discretization of equation 3 will be easier if we define two n, = n, matrices, W
and D. W is highly structured - it is an n, z n,, Hermitian, Toeplitz, and circulant
matrix (where n, is the number of grid points along the x-axis). Since it is circulant, w
is completely determined by its top row. Letting N subscript the Nyquist wavenumber

for the z-direction, the top row of W is given by
[Wo WyWg + Wy_y Wy Wy_y - Wp W;]

D is defined by

~

D = diag [0149 o (N=1)2N2(N=-1)2 - 941]

With these two matrices, equation 3 can be discretized

Temy 7 - v P!
where
UT = [’U.Q Uy Ug """ uZN_l]
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Equation 4 has a nontrivial solution only when p, is an eigenvalue and U is an

eigenvector. There are 2N eigenvalue-eigenvector pairs which we can index with A.

This poses a problem because it is extremely unlikely that our upgoing wave will
be an eigenvector of the wave-equation matrix in equation 4. We get around this by
decomposing the wavefield U(z,z,w) into eigenvector components ¢,{(z,z,x), where it is
understood that z,z, and o will from now on be taken to be discrete variables. The

decomposition is defined by the two equations

2N -1
ca = go ox(z.2.w) U(z.z.0) (5)
Ulz,z,w) = Eoc,‘goh(z,z,m) (8)

All that is left now is to figure out how to extrapolate U/, This is easy since we know

how to extrapolate the eigenvectors. We propose to use

i A
ea(z.z =8z ,0) = ga(z.2.0) gt ST [Pyl 42 (pza Teal) (7)

If pey is imaginary then we can pick its sign so that the wave field decays in the extra-

polation direction or we can set c=0. In our program we will do the latter.

Algorithm

If we wished to extrapolate a monochromatic wavefield we would start at positive z
and move towards the surface. At any given z-level, the first thing to do is to add the
contribution of the exploding reflector sources to the wavefield /(z,z.w). The eigen-
value problem must be solve for the matrix in equation 4. With the eigenvectors from
this step, we decompose the wavefield according to equation 5. Each component is
extrapolated with equation 7 and the extrapolated components recombined, as in equa-

tion 8.

This process can be repeated over a range of discrete frequencies to get the fre-
quency domain representation of the synthetic. Fourier transforming over w generates

the synthetic.



84

Examples

The generalized phase shift algorithm was coded up and tested to explore the
characteristics of its output. The first synthetic is the seismogram due to a buried
source in a constant velocity medium. The grid parameters of the input were nz =32,
nz =32, dz=5.0, and dz =5.0. If (ir.,iz) is used to describe the position of a point in the
z.z-plane using Cartesian coordinates, then unit sources were placed at (24,18) and
(25,18). The velocity of the medium was set equal to 1000. The time axis in the output

space has 32 samples and the sampling rate was 0.005.

The synthetic exhibits the usual hyperbola with the usual (and undesirable) wra-

paround in both the £- and z-directions. Some high-frequency noise

J §

FIG. 1. A constant velocity model generated by the generalized phase-shift method.
The timing lines are 0.02 seconds apart.

is evident on the plot of the output. This chatter is probably due to roundoff errors.

A variable velocity model was attempted next. With the same discretization param-
eters as that of the constant velocity model, unit sources were placed at {12,18),

(13,18), (21,16), and (22,16). The velocity was set equal to 1000 to the left of the
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FIG. 2. Variable velocity modeling with the phase-shift method. Reflections from the
velocity discontinuities at the sides and middle of the section are prominent.

17th grid point on the z-axis and equal to 1500 to the right of that grid point. Thus, the
hyperbola on the right is both flatter and earlier than the one on the left. The rest of
the synthetic

looks noisy because of roundoff, wraparound, and reflections from the velocity discon-
tinuities. Due to the periodicity of the Fourier transform, there are an infinite number
of interfaces from which our upgoing wave bounces. These reflections add considerably

to the incoherent appearance of the output sections.

Smoothing the velocity discontinuities should reduce the reflections due to vari-
able velocity distributions. The third model is the same as the second except that an
anti-aliasing filter was applied to the slowness squared distribution at each z-step. This
had a desirable effect of reducing the reflections from the model's velocity gradients.

It had the undesirable effect of generating a resonance in the vicinity of one of the
velocity jumps. One hypothesis for this effect is that the resonance is taking place

between the Gibb's effect peaks created by the anti-aliasing filter.
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