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Wave Equation Moveout

Jeffrey R. Thorson and Mathew J. Yedlin

Introduction

This paper presents normal moveout (NMO) from the viewpoint of wave-equation
migration. An advantage to this approach, though it may be more expensive than
streamlined methods of NMO in industry, is that it shows the actual physical approxi-

mations assumed in standard NMO and points the way to more accurate methods.

It will be shown that standard NMO is a special case of a general, exact moveout
procedure. Essentially it is a ray approximation to the exact equations, without filter-
ing or any amplitude correction due to spreading. The amplitude correction for
spreading is derived by applying the ray approximation to wave NMO. Further, there
exists a class of intermediate procedures between ray methods and the wave method of
NMO which promise to be relatively cheap and robust with respect to non-distortion of

waveforms in the trace.

Wave-equation Moveout -- Derivation

In this section the equations for performing an "ideal" normal moveout will be
derived. First let us define our problem: derive a procedure that takes one trace from
a common midpoint gather and transforms it to a moved-out trace. The resultant
traces can be vertically summed together to form the zero-offset stacked trace. Our
procedure is based on a wave equation, so that it will be exact insofar as the governing
equation we are using is exact. It should be gquasi-linear, so that there is little resultant
nonlinear distortion in waveforms on the trace. Another desirable feature is reversibil-
ity. The ability to transform back and forth between the common midpoint gather and

the moved-out gather allows filtering in one domain or the other.
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To justify using a wave-equation operator to perform the combined operations of
moveout and stack on a common midpoint gather, the flat-earth assumption has to be
made: beds are horizontal, and velocity stratification is horizontal. In this case the
double square root equation simplifies to a migration in offset only. The double square

root equation in the (@, k. k) domain is (Clayton, SEP-14, p. 25):
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where H = 5 and Y = o The spatial wavenumbers of half-offset and midpoint,

are, respectively, k, and k,,. For a flat earth, k, = O for any nonzero part of the data
field q, so that (1) reduces to
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Now change coordinates from z to migrated two-way travel time T,

2
dz dr 2
= 2 . =
T {v(z) dz v(z)
so that

%;’::inl—qu. (3)

This is the equation governing downward continuation of a common-depth point gather
that combines the operations of moveout and stacking. We can talk about CDP gathers
here rather than CMP gathers since the flat-earth assumption now prevails, and gath-

ers do possess a common depth point.

Before continuing, note that the sign conventions used in this paper are:

9@ = [at eq(e),

a(ia) = [an e™"q(n),

Migration involves a waveform either travelling forward in time and backward in z, or

backward in time and forward in z {(e.g. 6(f + zv)). For a delta waveform,

iwZ
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g(w) = fdte 6t+2)=e *
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This is the solution of the simple downward continuation equation

a9 _ ;. 2
dz 'vaq

so that the sign of the right hand side of (3) agfees with the sign here (positive iw).

Now the moveout and stack operators can be separated by considering the appli-
cation of {(3) to each separate trace of the CDP gather. Data on other traces are
assumed to be zero. Migration creates a two-dimensional field out of this trace, but
only the zero-offset trace of this field is retained. After performing this operation of
moveout to each trace (converting it to a zero-offset trace) all traces may be summed
together to give the migrated field g(+, t=0, h=0), since the entire operation done by

(3) is linear. The moveout traces have thus been stacked.

Let g,(¢) be a CDP trace at half-offset h. The wavefield to be migrated looks like
g(h', t) = 6(h'~h)gn(t), or,

+w +

Sat emtq, () fdn 6(h ~h) e*"

g (k. w)

gn(w) eik"h

The migrated wavefield, via (3), is simply
g(kn, @ 1) = ' VIH g (g, w)

The desired zero-offset trace is found at t=0 and h=0:
1 4o +m 5
g(r) = g(r. h=0, t=0) = L—Q-fdkhfdw eWTVI=H® g (k). @)
or,
L)
1 /1 2 ik, h
(1) = [z [ [dknda ™V g (w) ™ (4)

‘Ukh
where H = ——.
2w

k
Now introduce the ray parameter p = —* 1t is the physical ray parameter which

2w

Sln’l?. The factor of one half is

corresponds to the emergence angle of the ray: p =

present because our coordinate system is in two-way time 7 versus half-offset h. The

true p is half the slope seen on the time-distance curve in our coordinate frame:
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1 dt

= S kp = 2wp.

The differential of the double integral (4), by examination of the Jacobian, is
dkpdw = 2|w|dpdw. Then (4) becomes

+m +o

g(r) = E:Tgfdpflwldw g (w) gie(mVi-vip®+ 2ph) | (5)

This is our basic equation. The procedure implied by (5) is the following:

a) First, rho filter. This term, borrowed from the field of tomography, means apply
the filter |w| to g(w). If §{w) = |w|g{w), then

<4

4w
_ 1 ~ iw{tv/1-uPp? + 2ph
a(r) = Ly [ap [ da §o) o rVimER e ),

g(t) = —:T—po g{t = ™V1 - v%%+ 2ph). {5a)

b) Stretch each individual p-trace:
g(r) = q(rV1-%p?).

Notice this is an elliptical moveout rather than hyperbolic moveout. Equation {(5a)

becomes:

a(r) = - [dp T(r + 2ph), (5b)

c) Finally, note (5b) is a slant stack over p with slope 2h. Without any significant loss
of accuracy, the p values to be stacked only need to range over the propagating
window —1/v £ p £ 1/v. Outside this range, the square root of (5) becomes ima-

ginary, where waves corresponding to these values of p are evanescent.

Once all the offset traces g, are moved out, the procedure can be reversed. An
inverse slant stack over h now has to be performed with slopes -2p. The p-gather of
equation (5a) is re-obtained when rho filtering is subsequently applied (Thorson, SEP-
14, p. 81).
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A theoretical advantage to wave equation NMO is that it is non-distorting. Down-
ward continuation is an all-pass filter in the direction +, so that the operations
described above will not change the color of each offset trace. Rho filtering can be

thought of as counteracting the smoothing effect of the integration in (5b), so that the

|o]

resultant filtering performed on an offset trace is simply o which is simply a Hilbert

transform. There is a subsequent disadvantage here. The amount of computation
required to produce one moved-out trace is n, times as much as the standard process,
where 7, is the number of p-traces used in the sum of (5b). If not enough p-traces are
slant-stacked together, poor results are obtained at large cost. The following sections
of this paper describe some solutions to this numerical problem by examining "better"
approximations to the p-integral in (5b). An obvious idea is to apply a stationary phase
approximation to perform integration over p -- essentially integrating around a single p
value corresponding to the ray arriving at half-offset h. In the next section it is shown

that this is equivalent to a dressed-up version of standard NMO.

Stationary Phase Evaluation of (5)

In (5), the complete double integral representing the moved out trace g () is

given by
1 7
g(7) = —zﬁ'fq(w) lw| J(w.h,7) dw (8)
where
e 00
J(wh,7) = [etedt-rrlgp (8a)
and

8(p,h,7) = 2ph + Vi-pir

To evaluate (8), we do the p integral first by the method of stationary phase. This
method is used especially for integrals which have the same form as the p integral,
denoted by J. The stationary phase method is valid when the parameter multiplying
the phase function approaches infinity. In our case the large parameter is the fre-
quency w. Thus, the stationary phase method, applied to the p integral or p-stack, is a
high frequency approximation. When this approximation is integrated over frequency to

obtain g{7), the result is a ray or geometrical approximation to the complete double
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integral in (8).

In order to evaluate J, we find the point or points where the phase 8 is stationary,

since everywhere else the integrand is oscillating so rapidly that it cancels itself out.
For the given offset, the phase is stationary ‘when %;9_ = 0. For the phase function

defined above, this occurs when

2h
vVA4h? + vRrR

Before actually applying the method, we shall need the values of ® and its second

derivative at the stationary point, p,. These values are given as

V4h? + v2R

8(p,) = A
and
3
d2e - _ (4h® + v3r%)2
dpz p=p, ’UTa

Utilizing the values defined above, we expand the phase about the stationary

point, so that

3
Van? + v2e2 _ (4h® + 039"

v 2y Te

(@ - po)? (7)

Then substitution of (7) into (Ba) results in
3

-—-\/4n2+u2r @ M (h24 oy E(p ~p)2
J{(wh,T) = fe dp (8)

By contour integration, the integral in (8) can be easily evaluated. Therefore,

LR/ Jrame = B 3.4
J(w,h,7) = \/ 2mu T o ¥ v som(w) (9)
|| (4h? + +3yR)372

Substitution of (9) into (8) yields the moved out trace g ()

4 10 Jin® 4 o P2
1 . ‘\/ ZTT’UT > 4h* + 1 sgn (w)
= —— d 10
q(T) 2ﬂ2_‘£q(W)|W| |(4_h2+,r,u2)3/2 € w ( )

The integral in (10) can be evaluated by inspection so that

g{r) = \/_ \/(4h2 + ve2)3 2 g(Vah? + v?7?) (11)
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.where
- * 1T o (o) + et
g(t) = [Vie[e * g({w)dw

A cursory glance at (11) demonstrates that the recipe for a ray-type NMO has three
steps. First, the trace is stretched by the normal hyperbolic factor, m
Then, the two-sided filter V-1 w is applied. Finally, at each offset, the trace is scaled by
an offset and time dependent amplitude factor. As is the case with NMO done the con-

ventional way, there is some distortion as events are move-out corrected.

The "Disk-Ray" Approach to Wave Equation Moveout

Improvernents in the efficiency of using equation (5) revolve about the solution of

the integral

= fdp etve(p) (12)

where for our particular case 8(p) = \/T—TEpET + 2ph. In the last section, a parabola
was fit to the phase function 8(p) at the point of stationary phase, which incidentally
was the maximum phase. The result was normal moveout with extra filtering and
amplitude corrections applied. In this section, integral (12) is approximated by fitting
straight line segments to the phase function 8(p) (figure 1). The objective is to perform
a good moveout with a sum over relatively few p values. The method is reminiscent of

the disk-ray modeling of Wiggins (1978).

Suppose we divide the path of the phase function 8(p) in the propagating region

into pieces and approximate each piece by a straight line segment (curve Q of figure
1). Then

Py
= fdp oiu8p) — i f'dp £iu8(n)
i=1p 4

i-1)

n P
E S dp expiw|8;
i=1pyy

where

AB; = 8 — 84y,

Ap;

i

Pi~ Pi-ns
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FIG. 1. The phase function @(p). It is a slanted ellipse with vertical intercept T and
range —1/vSps1/v. This represents propagating values of p. In the stationary phase
case @(p) is approximated by the parabola P fitting it at it’s maximum value. 8(p) can

also be linearly interpolated at the points p;: curve Q. In any case the main contribu-
tion to the integral (12) occurs near the maximum p = p, where the curve goes flat.

8; = O(m).

Ap can vary, since the p;'s are free to be chosen. With the above approximations, the
integrals inside the sum are easy to evaluate:

)
. AB;

J dp expiw|8;i + K“L —Pi-1)

P; 4 Y
_ wlo A@t Api . A@t e i A@{
- exp 1w)9 Api Pi-1 iwA@,: exp w Api p!. xp w Ap{ pi—l

Apy 100, me,.__I]

= 1€ -

) CJA@-;_

(13)

Therefore the integral (12) is simply the sum of terms (13). Now place this result into
equation (5).
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g(7) = ‘2‘.,1}?-_/' Iicai o ¢ () E AP; [ 1, _  tul

In this case, the filter to apply to the initial traces q(t) is a Hilbert transform:
1ol _ —~isgn(w). Now let

1w
g(t) = -Hi(q(t)) = F.T. “1[ ~isgn ()g (w) J
Then
a(r) = L5 [3(0) - (0] (14)

Reorganizing this gives the desired result

AP1 Apisr |~
Toor | 908 (15)

(M = 3158

(where we assume Ap,.y = 0). One can immediately see that the contribution to the
sum occurs where the curvature of @(p) is large. Very little is contributed to the
integral where 8(p) is flat. This provides a guideline for picking the nodes p;: cluster
them where there is curvature and spread them out on the flat parts. To be safe, one p;
should always be the principle ray parameter pg of the previous section, so that A8; in
(14) cannot by chance drop to zero. It is interesting to note that in the limit, (14)

approaches

+l/'u

q(r) = = f dp |1

-1/'u

which corresponds to equation (5).

For T-variable velocity, @ has the form
8(p) = fd-r V1 - v3(r)p? + 2ph.

The preceding analysis follows through in the same way. To obtain values of @(p) from

this equation, table lookups can be implemented, when the RMS velocity curve is

known.
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FIG. 2. (a): Artificial common-midpoint gather generated with a constant velocity of
1500 m/sec and a constant waveform. The parameters chosen for this model were:
0.02 sec sample interval, 25 m trace interval, 48 traces and 100 samples per trace.
Zero offset travel-time of the event is 0.66 seconds. (b): Normal moveout correction of
(a) ( at a velocity of 1500 m/sec ). (c): Wave equation moveout correction of (a) at the
correct velocity.
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.Example

Figure 2(a) shows a trial common midpoint gather made from a constant velocity
model of 1500 m/sec. It is a simple waveform superimposed on a hyperbolic trajectory.
Therefore, when whis event is moveout-corrected, the flanks of the waveform will be

over- or under-corrected because of the apparent different velocity of the flanks.

With the correct velocity, a crude standard NMO is applied to figure 2(a). The
results are shown in figure 2(b). For comparison, the results of applying equation (5)
to the gather in figure 2(a) are shown in figure 2(c). Forty-eight p-values were used in
the p-stack. It gives virtually the same response as NMO, except for an obvious decay in
amplitude at larger offsets. This is due to the fact that no amplitude adjustment was
done for the case of standard NMO.
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