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RESAMPLING IRREGULARLY SAMPLED DATA

Dave Hale

Abstract

Many data processing tools require that seismic data be sampled at regular inter-
vals in space and time. Because uniform spatial sampling is often difficult, a resam-
pling technique is needed to convert irregularly sampled data to uniformly sampled

data. Two possible techniques are discussed in this paper.

The first resampling method discussed is exact, costly, and very sensitive to local
error (i.e., a few bad samples). The second method is approximate, cheap, and insensi-
tive to local error. Tests were conducted to compare the performance of the two
methods in resampling data containing errors likely to be found in seismic data. The
results of these tests indicate that the second method should be used to resample

most irregularly sampled seismic data.

Introduction

Sampling seismic data uniformly in time is easy. Uniform spatial sampling, how-
ever, is more difficult and sometimes impossible to achieve. Geophone groups are mis-
placed when seismic lines cross rivers or highways. We usually try to organize land
seismic surveys into a uniform grid of seismic lines, particularly in collecting 3-D data;
but because of terrain or permitting problems, we are often unable to obtain this spa-
tial uniformity. Marine seismic cables drifting sideways again result in irregular spatial
sampling. We may even think of missing (dead) traces as a special case of non-uniform

spatial sampling. Given then that irregular sampling exists, what can we do about it?

The simplest action is to ignore the problem by assuming that irregular samples
are uniform. For low wavenumbers (spatial frequencies) this solution may be reason-

able; certainly, a wavefield with a wavenumber of zero (a horizontal, constant-
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amplitude event) can be spatially sampled anywhere without error since all of the sam-
ples are identical. But for higher wavenumbers, corresponding to more steeply dipping
events, the error in assuming uniform sampling becomes significant. Application of
processing tools which assume uniform sampling (e.g., Fast Fourier Transforms, finite-
difference migration, dip-filters, etc.) will further propagate and spread this error.

Fortunately, we need not be content with this simple, do-nothing solution.

The remainder of this paper describes two possible methods for converting irregu-
larly sampled data to uniformly sampled data. The first method was described in 1958
by Yen. His method will be summarized here not only because some geophysicists may
be unaware of it, but also because the second method to be discussed is an approxima-
tion to Yen's solution which is more applicable to seismic data contaminated with trun-

cations, aliasing, and noise. The second method is also faster computationally.

Yen’s global replacement method

Let M be the set of indices or subscripts corresponding to 7n misplaced samples.
The indices are integers which, when multiplied by the sampling interval At, yield true
time, distance, or whatever is appropriate. Instead of f{lAt) we have F(¢) for Il e M
(I included in M). Assume At=1 and that our data has no frequencies greater than

Nyquist, 7/2 cycle/sample. Then the sampling theorem allows us to write:

F () Zf(j)si’n.c(tl—j) ileM
Jj

or

F) = ) fG)sinc(t,—7) + % f(G)sinc(ti—j) leM

irM jeM

which we can rearrange to obtain:

2 FG)sinc(t—j) = F(t) = 3 f(j)sinc(ti~j) = @ ileM (1)
jeM JEM

or
Sifi = @ ijdleM (2)

where summation on the left-hand side is implied by the repeated subscript j. Sy isa
mXm matrix whose elements are sinc(f;—j) which may be inverted to obtain the uni-

form samples f (1).
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Yen (1956 and 1957) showed that Sy; is invertible and derived an exact, explicit for-

mula for reconstructing the continuous signal f () from its non-uniform and uniform

samples:

Ft) = 3 Fltny;(t) + ), £) es(t)
feM ixM

where
¥i(t) = Lt ] [tj"k sin 7t
d il ti=te | ieult—k] sinwi;
k#f
and
(t-t)(F~k)
t) = — e ginc{t -7
eit) = I Gmyg=g) Snet=9)

(3a)

(3b)

(3c)

Because we want to replace the 7n misplaced samples with the uniform sample
values f (1), we must find the limits of ¥;(¢) and ¢;{(t) as ¢ -1 for Ll £ M. Equations (3)

then become:

FQ) = Y} r)w@) + 3 £0G) es() sleM
fok iou
where
o e .
¥s(0) = kel ta’_tkl k]glll_k sinc (t;=1) LyeM
k] kx
and
p;(1) = V bl opplize] come i san
! keM|J ™~ i kcﬂll_’c

(4a)

(4b)

(4c)

Equations (4) provide the mn solutions to equations (1) so Yen has, in fact, inverted S;.

We can easily identify this inverse:
i = Sij'g; = Rygy

£ Esz[f(tj)— ) f(k)sim(trk)]
jeM kgM

Y F(t) Ry = 3, f(k)Y, Rysinc(t;—k)
jeM kxM jeM

E Ft;) Ry + 2 f(])[

le sinc (tk "j )]
keM
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Comparison with equation (4a) yields the identification:

¥i(l) Ry = Sj! iLieM

and

It

vi(l) = - ) Ry sinc(te—j) leM, jgM
keM

Thus far nothing has been said about the limits of the second sum in equations
(3a) and (4a). The correct procedure is to sum from —w« to +«, omitting the j ¢ M. But
since our data is truncated, f () is non-zero for only, say, n samples; and the sum may
be taken over j = 1,23, ‘' ,n, j £ M. The assumption that f{(j) is zero outside this
interval will naturally lead to resampling error near the edges of the data, and the
magnitude and extent of this error are determined by the rate at which rp,-(l)—»O as
|j=1|»». We might force @;(I) to zero by tapering as a function of |j~l|. This
approach is often used successfully in approximating the infinitely long sinc function
with a finite-length, "local” function. However, whereas the envelope of sinc(¢) decays
to zero monotonically as |¢ [+, the envelope of @;(l) is not so well-behaved, tending to
be large in the gaps created by misplaced samples and certainly not approaching zero
monotonically as [j—I|-w. Furthermore, whereas the symmetry of sinc(t) about
t =0 leads us naturally to taper symmetrically, the asymmetry of w;(1) about
7—1| = 0 leaves us wondering what sort of taper would be appropriate. Indeed, the
taper might even need to be adjusted for every j since the wj(l) differ dramatically
(not simply shifted) for different j. All of these unfortunate properties of w;(l) [and
¥;{l) as well] may not be obvious from equation (4c) [and (4b)], but they will be illus-

trated in examples discussed later.

Trouble in applying equations (4) is further expected when we have noisy or
aliased data. Suppose that only one (the Ith) of the n samples is misplaced. Then
equations (4) yield:

PO )

sinc(t;—1)

16 >[l : ]( 1y
=1

J?ﬂ

Because all n samples are used in replacing the Ith sample, we call Yen's procedure a
"global” replacement method. The trouble in using a global method is that a single
noisy or aliased (i.e., erroneous) sample, even one far away from the misplaced sample,
will have some undesirable influence on the replaced sample value. The procedure may

fail miserably if catastrophic error such as a tape "glitch” is present.



43

Intuition suggests that we should be able to replace a single, misplaced sample
without using every other sample available. But we still do not know how to correctly
"ignore" the remote samples. This problem provides motivation for a different replace-

ment method.

A local replacement method

We begin by replacing the sine functions in equation (1) with one of the finite-
length approximations referred to earlier. Larner (1979) has shown that excellent
approximations are possible with fairly short functions by sacrificing accuracy at the

high frequencies. So we replace the sine with:
s5;y = s(t~j) = h(;=j) sinc(;—5)
where h(t) is a tapering function which decays to zero at || = J, to obtain:

Y fUsy =) - Y fG)sy  ileM (5)
oM

M
15 < 15 <
Again suppose that only one sample is misplaced. Then

1
Sn

F@) = ft) = 3 FG)sy

It,i;jﬂi <J

Now we can see why we are justified in calling this replacement procedure a "local”
method. Only the samples closest to the [th sample are used in its replacement; and
the method should, therefore, be less sensitive to remote catastrophic errors, such as
truncations or bad data, than is the global method. Notice that we must choose J large
enough to satisfy |f{,—1|<J (to avoid s; = 0). We will assume for definiteness that

|t,—1| <1 and investigate equations (5) more closely.

Equations (5) represent a banded system of m simultaneous linear equations for
the m unknown uniform sample values f(l); Il € M. The "bandwidth" (B ) of the matrix
on the left-hand side depends on the length J of our finite approximation to the sine
function and is given by: B = 2J + 1. Recall that Yen derived an explicit equation for
the inverse of a matrix of sinc values. No comparable formula for the inverse of s
exists; the property used by Yen to obtain his inverse is destroyed by the tapering of

sinc.

We should not, however, be discouraged by our inability to construct an explicit

inverse. Suppose that all n samples have been misplaced (i.e., m = n). From
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equations (4) we see that replacement of all n samples will require roughly n? opera-
tions (multiplications and additions), assuming we have found no "correct” way to taper
¥4(1). The cost of solving equations (2) directly by Gaussian elimination is also about n.?
operations (Strang, 1980, p.5). No computational effort is spared in having the inverse
given by equation (4b)!

The banded system of equations (5) now becomes attractive from a computational
viewpoint. Solving this system for the n unknown f (1) will require roughly J%n opera-
tions (Strang, 1980, p.41), making the local method considerably cheaper than the glo-
bal method.

The procedure for spatially resampling 7 misplaced traces of seismic data might

be as follows:

1) Construct the banded, triangular decomposition

of s;; (~J?*n operations).

2) For each time-slice of data:
perform forward elimination and back-
substitution to obtain the resampled

time-slice (~Jn operations).

One further simplification is worth mentioning. When misplaced samples occur
sparsely, the mxm system of equations (5) may separate into systems of lower order.
For example, if misplacements occur no more than once in every 2/ samples, then all
replacements require only the trivial inversion of 1X1 matrices. This occasional mis-

placement occurs when seismic lines cross rivers, highways, etc.

Testing the resampling methods

A series of tests were conducted to determine the performance of the global and
local methods in resampling truncated, high-frequency (even aliased), and noisy data,
the sort of data we collect in seismic experiments. The known signal used in most of
these tests is given by:

zﬂfmax(t—l)z
1=t
100 1 < 561

z(t) = (6)
(27 f max(101-2)2

cosl 100 ] :51=¢ =101

CcOSs
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This function is a chirp signal with an initial frequency of 0 cycles/sample at ¢ = 0.
Frequency increases linearly until ¢ = 51 where frequency equals f ¢ Cycles/sample,

then decreases linearly back to 0 cycles/sample at ¢ = 101.

A uniformly sampled version of this signal is shown in Figure 1. In this example,
S max = 0.4 (waum = 0.5), and 7 = 100 uniform samples were taken at ¢ =1;
[ =123, :,100. The uniformly sampled trace is symmetric about I = 51 except for

the missing 101st sample.

The next trace plotted in Figure 1 (entitled "sample shifts") is a sequence of 100
random numbers uniformly distributed between 10.5. Irregular sampling times were

then determined from the shifts by:
t;, = L + shift, ;1 =123,-,100

The irregularly sampled trace, also plotted in Figure 1, was then given by equation (8)
evaluated at these random sample times. This irregularly sampled trace is plotted as
though it were sampled uniformly. If we were to incorrectly assume uniform sampling,
we readily verify that our greatest error would be in the high-frequency, middle portion

of the signal.

Three attempts were then made to construct the uniformly sampled trace from
the irregular samples, and the results are shown in Figure 2. The first three traces are
the resampled traces: the next three are the resampling errors, the absolute, sample-
by-sample differences between the (known) uniformly sampled trace and the resam-

pled traces.

The traces labeled "yen'" correspond to results obtained using Yen's global method
outlined by equations (4). "Local4" corresponds to the local method where J, the
length of the sinc approximation, equals 4. '"Local8" corresponds to J = 8. A quick
examination of the errors and comparison of the traces in Figures 1 and 2 illustrate
that all three methods produce reasonable uniform samples except near the ends of
the traces. Detailed comparison of the errors is probably unwarranted since these

errors correspond to one particular set of randomn sample shifts.

To provide a more reliable estimate of the errors expected in using these
methods, the experiment described in Figures 1 and 2 was repeated 100 times, each
time using a different set of random sample shifts. The absolute errors for each of the
100 trials were averaged to obtain the traces shown in Figure 3. Also shown in Figure 3
is the average, absolute error obtained by doing nothing, simply assuming that the
irregular samples were uniform. Notice that this "do-nothing" error is approximately

symmetric about sample 51. This symmetry, expected since the uniformly sampled
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trace is symmetric about sample 51, implies that an average of 100 trials reasonably

approximates the expected error for a given trial.

Now examine the errors near the ends of the traces. Doing nothing happens to
work well here only because the data is almost constant near the ends. Both global and
local methods yield significant errors near the ends where the data is truncated. As
expected, however, the exient of this error is less in local4 than in local8 than in yen.
Compare, for example, the errors in constructing sample 5. {Additional tests not
shown with f .,z = O confirm that the error near the ends is indeed due to truncation

and not to an inability of the methods to resample low-frequency signals.)

The slight asymmetry of the error in "yen" further emphasizes the extensive
influence of truncations when using a global method. This asymmetry is due to the fact
that the uniform signal is not truly symmetric about sample 51. The signal length is
100 samples; true symmetry would require the 101st sample, and its absence results in

a slightly higher level of error in the last half of the trace than in the first half.

Now compare the errors near sample 51. The local4 method performs poorly at
the higher frequencies. Why? The local4 method is based on a finite-length (J = 4)
approximation to the sinc function. Because this particular approximation is known to
break down at a frequency of about 0.3 cycles/sample (Larner, 1979), we expect the
method to produce errors near sample 51 where signal frequencies are about 0.4
cycles/sample. The sinc approximation for the local8 method is known to be good from
0 to about 0.4 cycles/sample, so this method, not surprisingly, works well within this

frequency range.

The results so far confirm what we might have expected, that the local method
performs better than the global method in the presence of truncations but at the cost

of performance at the higher frequencies.

Truncation is just one of the problems we are likely to encounter in resampling
irregularly sampled data. Aliasing is another. To test the performance of the three
methods in the presence of aliasing, the experiment described earlier was repeated
with f ey = 0.51. Because fuyguist = 0.5 the uniformly sampled data is just slightly
aliased and then only in the region near sample 51. This "local aliasing” occurs in
seismic data, for example, when a steeply dipping diffiraction tail overlays predom-

inately horizontal reflection events.

Figure 4a illustrates the uniform, irregular, and resampled traces for one of the
100 trials conducted in this experiment. The average absolute errors for the different

resampling methods are plotted in Figure 4b. The uniformly sampled trace in Figure
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.4a illustrates the aliased samples about sample 51. For these samples, none of the
resampling methods are valid; equation (1) no longer holds for this data. So we should
not find the errors near sample 51 in Figure 4b too surprising or interesting. More
important is the error in the non-aliased samples. The average error in constructing
samples 10 through 40 with the local methods is significantly less than the error
obtained with the global methods in which the few slightly aliased samples around sam-
ple 51 influence the replacement of all samples. With the local method, the error is

confined primarily to the aliased region.

In addition to truncations and aliasing, seismic data is usually contaminated with
noise. This noise is often localized (e.g., one dead trace, a tape glitch, ete.) so we have
reason to test the performance of a resampling method in the presence of localized
noise. We, therefore, repeated the first experiment (with fay = 0.4); but this time we
set the value of the 26th irregular sample to zero. The absolute errors for one trial in

construeting the uniform samples are shown in Figure 5.

As we should expect, all three resampling methods perform poorly near the 26th
sample. Yen's global method, however, allows this one bad sample to significantly
affect the replacement of a much wider range of neighboring samples than do either of
the local methods. Local4, while still producing significant error at the high frequen-

cies, produces the least amount of error near the bad 26th sample.

Other replacement methods

Many alternate methods for resampling irregularly sampled data exist, some of
which are currently being used regularly by seismic data processors. But we know of
no one using Yen's method. Sankur and Gerhardt (1973) tested Yen’s method along
with several other resampling techniques: low-pass filtering, Karhunen-Loeve interpola-
tion, spline interpolation, and linear and zero-order-hold interpolation. Their conclu-
sion was that Yen's technique is superior to any of the other methods tested. This
result should not be too surprising since Yen’s method is theoretically ezact in the
absence of truncations, aliasing, or noise. Sankur and Gerhardt, however, do not
wholeheartedly recommend Yen's method because it is computationally expensive. In
fact, to avoid the ~n? operation count, they windowed the %—(l) functions in equations
(4). In constructing the Ith uniform sample, they let the indices ¥ and j run from
lL-W/2tol +W/2in the products of equation (4b) and the sum of equation (4a),
respectively, where W was their chosen window length. This windowing, while decreas-

ing the operation count of Yen's method to ~W?%n, introduces resampling errors.
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Recall that we have no reasonable way to choose #; we do not know how to taper 'wj(l ),

the inverse of S);, as a function of j—-I.

To illustrate this problem, we generated two examples of ¥5i(l) corresponding to
two different sets of random sample shifts. " These functions represent the weight
applied to the 51st irregular sample in constructing the I[th uniform sample and are
labeled "yen" in Figures Ba and 6b. The largest value of ¥s:(l) is ¥s1(51) as we might
expect, but both figures demonstrate that the 51st sample contributes significantly to
the construction of remote samples as well. How do we taper {(or window) these func-
tions?

A fundamental purpose of this paper has been to demonstrate that, in practice, we
should avoid this question by tapering the sinc matrix Sj; rather than its inverse ¥e(L).
That tapering S; produces a localized 9¥,;(l) is perhaps not obvious. (After all, the
inverse of a banded matrix is not necessarily a banded matrix.) So to illustrate the
nature of ¥;(1) for the local methods, ¥s;(1) is plotted for both local4 and local8 in Fig-
ures 6a and Bb. Comparison of ¥s1(l) for the three methods reveals the relatively lim-
ited range of influence of sample 51 obtained with the local methods. The last two
traces in Figures Ba and 6b are the sample-by-sample ratios of ¥s1(1) for the local and
global methods; they represent the unwieldy tapers one would need to apply to ¥s(1)
for the global method to obtain ¥g{l) for the local methods. The message is clear: do

not taper or window 'g(/j(l ); taper Sy instead.

Conclusions

The sizable errors obtained by "doing nothing' about misplaced samples suggest
that we should do something. For "ideal" data, Yen's method is exact. For seismic
data, contaminated with truncations, aliasing, or bad data, a local replacement method
performs better and at much less computational cost than Yen's method. The error in
using a local method is significant only for frequencies at which the approximation to
the sine function is in error. For the J = 4 and J = 8 approximations used in the tests
discussed earlier, the error is negligible for frequencies below 680% and B0% of the
Nyquist frequency, respectively. Longer sinc approximations increase the upper fre-
guency limit of the approximation at the cost of making the method less local. For
truncated data we should use very short approximations near the end samples and

longer approximations near the middle samples.
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FIG. 1. Uniformly and irregularly sampled "chirp” signals used to test the resampling
methods. The highest frequency in the chirp is 80% Nyquist. The middle trace displays
the random shifts by which the irregular samples are misplaced from their uniform
sample positions. The clip for this plot is 2 (meaning that an amplitude of 2
corresponds to 1 trace-separation and amplitudes greater than 2 are clipped).
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FIG. 2. Resampled traces and the absolute errors for the three methods tested. "Abso-
lute error” is the absolute value of the difference between a resampled trace and the
uniformly sampled trace of Figure 1. Clip = 2.
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FIG. 3. Average absolute resampling errors for the three methods tested along with the
average absolute error in not resampling. "Average" means the average over 100 trials,
100 different sets of random sample-shifts. Compare the extent of the error due to
data truncations for the three methods and notice the error at high-frequencies in
local4. Clip = 0.5.
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FIG. 4a. Uniform, irregular, and resampled traces from one trial where the uniformly
sampled trace is slightly aliased at the middle samples. Clip = 2.
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FIG. 4b. Average absolute resampling errors (100 trials) for the aliased data of Figure
4a. Compare the errors in the non-aliased regions. Clip = 1.
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FIG. 5. Absolute resampling errors for one trial when the 28th irregular sample was set
to zero (simulating a dead seismic trace). Notice the extent of the resampling errors
for the different methods. Clip = 1.
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FIG. 8a. ¥51(l) corresponding to a particular set of random sample-shifts for the three
resampling methods. The value plotted at sample 65, for example, is the weight
applied to the 51st irregular sample in constructing the 85th uniform sample. Also

plotted are the "taper" functions one would need to apply to yen to obtain local4 and
local8. Clip = 2.
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FIG. 8b. Same as Figure 8a except that the ¥5,(I) and tapers correspond to a different
set of random sample-shifts. Notice the considerable differences between the ¥5,(l) in
this figure and those in Figure 6a. Clip = 2.
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