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DATA RESTORATION WITH PARSIMONIOUS MODELS

Jon F. Claerbout

To be parsimonious, a model must have an abundance of zero or small values.

Whether a given mathematical function of geophysical data represents a parsimonious

model is a matter that depends largely on geological circumstances. If a parsimonious

model exists, and the mathematical function is invertible, then the function can be

utilized to extrapolate and interpolate an incomplete dataset.

Those of us who have worked on migrating stacked sections have been spoiled.

Most geophysical datasets, such as CDP gathers, are seriously truncated, aliased, and

gapped.

Examples of Parsimonious Models

1.

P(t=0,94,z). The migrated seafloor should have no echos above it. The suppres-
sion of small values above the seafloor in migrated data should be a good criterion
for the horizontal interpolation of data near the seafloor. Likewise, off the side
edge of a migrated section, depressing the semicircles leads to extrapolated

values in the unmigrated section.

P(w.ky). An entire zone of (w.k,)-space should vanish by evanescence. Good gual-
ity data often has a narrowly banded dip spectrum so that most energy lies along
lines in (w,k:y)—space. For example, you should be able to extrapolate a strong,
consistent dip at the truncation (in y) of a zero-offset section by the criterion

that the dip spectrum should be sharpened.

P(h.t=0,z). Downward-continued CDP gathers should have energy clustering

near zero offset, h =0, with small values elsewhere.
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4. P(h,t'=1,py). Downward-continued, slanted, CMF gathers with pre-critical
reflections {Gonzalez and Claerbout, SEP-16, p. 181) should have a clustering at

some dh,dT, which determines interval velocity.

5. P(t=0,z,p). Downward-continued, CMP gathers with refractions (Clayton and
MeMechan, SEP-24, p. 33) should have a clustering at v(z) = 1,/p(2).

All the above mappings are linear or quasi-linear. There is no "picking" of the

data. All are easily invertible.

Window Functions and Stretch Functions

A dogmatic way to treat prior information of supposed vanishing portions of model
space is by windowing, that is, transforming data to model space, then zeroing the
offending values. Returning to data space, interpolated and extrapolated data values
will be found. The trouble is that where it is already known, the resulting data will be
inconsistent, to some degree, with the original data. Restoring the original data,
enables repeating the process. Iteration may never converge since the raw data may
be inconsistent with the ideology of the prior information. This suggests using a suc-
cession of weakening tapers. For example, off the side of a migrated section it seems
reasonable to use a linear taper weight, which drops to zero at the radius of the migra-

tion semicircle. Likewise, tapers could be used around the velocity-estimation models.

Sometimes the parsimony of models results more wholly from geological cir-
cumstances. Prior information about wave propagation may play no role. It may be
that the earth model is dominated by just a few dips. We must depend, it seems, on the
possible parsimony of the earth model if we are to interpolate sections that are spa-
tially aliased. The practical approach here is to use a data-dependent window, in other

words, a streich function. Increase large values and decrease small ones. Then iterate.

The way to choose an appropriate mix between window functions and stretch func-

tions must, at the present time, be regarded as practitioner’s art.

Definitions

T = raw data
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# = missing data or "padding for 7" or "tag" data (truncated,
aliased, gapped)
M = parsimonious model

= noise in the space of r caused by M being inconsistent with

r
(r.#) = full dataset = raw data with padding
L(r.z) = function to generate a model from a full dataset
L~Y(M) = function to generate data (r+n,z) from any model M
M = L(r.any z)= anoise-free model

S = your choice of window and stretch functions

The minimum entropy stretch is defined by

m'm |

————— where 1> >0
<M M=

S(M) = M

A Faster Algorithm
The model M proposed in each loop of this algorithm should be better than the

model in the algorithm proposed in a previous paper (Extrapolation, Interpolation and
Smoothing of Wave Fields). because more effort is made to get M consistent with 7.

As a result, you can start with bigger values of £ and hope for faster convergence.

Algorithm ('=" means "«") Comments (""=" means "define")

M = L{(r,0) M = noise-free model, zero pad

M = S(M) M = noisy model, less entropy
Begin iteration loop. Good luck!

(r+n,z) = L~YM) Discover noise n and revised pad z

M = L{rz) M = noise-free, pad is same z

N = M-M N = Noise. Note M and M have same z.

M = S(M) M = anew noisy model

P = M-M F = proposed perturbation to M

P = P——Nﬁ(‘llg—:ﬁ—)l Remove noise, you hope.

M = M+P M = proposed model

End iteration loop.
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Comments on Algorithm

Strength. With luck and experience, a big £ may do the job on one pass without

iteration.

Weakness. Noise N may oscillate from one iteration to the next, so it may need
to be averaged. No good ideas about appropriate size of £. We rely on experience and

sense.



