Restoration of Missing Data by Least Squares
Optimization

Jon F. Claerbout

The quality of seismic data analysis is frequently degraded by missing data. The
problem can be seismic traces missing from the ends of seismic sections or from the
ends of CMP gathers. It can also be spatial aliasing (interlaced missing traces) or ran-

domly missing traces.

Ordinarily the problem of missing data is glossed over by the insertion of zeros for
unknown data values. Where this causes unsatisfactory diffraction effects the data is
often tapered smoothly to zero. Data tapering must be regarded as data falsification; a
crude expedient. Philosophically it must be inferior to finding extensions to the data
set (padding the data) which cause the processed data to be more satisfactory in some

subjective way.

Least squares optimality is usually philosophically inferior to optimality in some
other sense, such as entropy or the L1 norm. But least squares has a deserved reputa-
tion for computability. The purpose of this article is to illustrate that least squares
optimization can be computationally practical even when the number of unknowns is
on the order of hundreds of traces, i.e. hundreds of thouSands of unknowns. Likewise,
the number of constraints, the entire set of observed data, is also a very large number,

commonly in excess of 48,000, often millions.

Needed: A Transformation Between Data Space and Model Space

Prerequisite to the techniques of this paper is the existence of an invertible
transformation between data space and model space. There are several ready exam-
ples of such transformation pairs. Conceptually the simplest is Fourier transformation

and its inverse. Other examples are: the upward and downward wavefield extrapolation



operations; migration and diffiraction; slant stack and inverse slant stack. New invert-
able transformations are being developed by concurrent research for transformation
between the data space of a common midpoint gather and a model space of a velocity
spectrum. In the practical cases considered so far the transformation pairs are uni-

tary matrices, or approximately so.

The Optimality Criterion

In model space we have some clear ideas of what the earth does not look like. We
doubt the existence of the semi-circular reflectors so often predicted by migration pro-
grams. We doubt the imaginary velocities {negative V?) predicted by velocity analysis
programs. Sometimes these unlikely implications of our data may be suppressible only
by data falsification. This question of decomposition of the observations into true
values plus noise based on acceptability of the implied model is a very deep and hazar-
dous question. Until we achieve more technical skill than demonstrated in this paper,
we will take all observations to be perfect. Only the missing data will be chosen to pro-

vide the most acceptable model.

It is easy to hold a subjective opinion about what constitutes a bad model, but not
always so easy to find an optimality condition which will suppress such poor models. In
the least squares framework the choice of what to optimize amounts to the choice of a
weighting function. Before further discussion of the choice we will define the basic

computational technique and examine some examples.

Formulation and Procedure

The data space (x.r)* is composed of two parts, the raw data r, and values x to
be placed in gaps. Usually there is natural ordering within the data space. The data
may be two dimensional and the gaps may be interspersed arbitrarily within the data
or off the ends. But for our present discussion the structure of the data space is
ignored. The data space is mapped into a column vector with the known data r in the
bottom part of the vector and the unknown part, the padding x, in the top. Next we
have a matrix premultiplier for the data vector to transform it into model space. The

matrix is partitioned into a part A which multiplies x and a part B which multiplies

[AB] [f] (1)

r.



Once in model space we wish to form a weighted quadratic form. This is done by
premultiplying (1) by its transpose, placing in the middle a diagonal matrix of weights
w.

.[x'r']

&) [w]lan] B ®

The real and the imaginary parts of x may be regarded as independent variables.
Likewise x and x° may be regarded as independent. Setting to zero the derivative of
the quadratic form with respect to x gives a set of equations which is conjugate to
those of setting to zero the derivative with respect to x*. Hence we may ignore either
set. I like to consider only the set obtained by setting to zero the differential with

o =[] [w]fus] [x2] Q

Reorganizing

[ [w][a]fos] = =[] [w] u] ®

This equation outlines the computational algorithm. Begin with padding x for the
data set being arbitrary, commonly zero. Compute the right hand side, a vector.
Solve, or approximately solve, a set of simultaneous equations for dx. Update x to
x+dx. Iterate.

The left hand side matrix A"WA is generally far too large to be inverted, or even
stored in a computer. Practical problems are usually so large that exact matrix inver-
sion is out of the question. Some kind of approximation is necessary. First note that
any such approximation on the left does not affect the final solution x which is
attained. This is because once iteration has proceeded to convergence, dx = 0, it is
quite immaterial what matrix stands to the left of dx in (4). The fact that dx van-

ished is a consequence entirely of the right hand side.

Next recall that the basic operators are usually unitary. For example, A could
contain selected columns from the Fourier transform matrix. These elments are
orthogonal to their counterparts in A*. So if the weighting function W is smoothly
variable, it is natural to expect that A* WA will be very close to a diagonal matrix. In
my work so far | have chosen W to be of such a magnitude that I usually approximate
A’ WA by an identity matrix. This has often given good results. But not always so. I

experimented with changing the scale factor and also band matrix approximations, but
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these experiments were rather specialized and gave no generally useful conclusion.
Some applications seem to demand further effort with this matrix. Fortunately we may
expect to see a reasonable amount of literature on the subject in the field of medical

imaging. It is a subject to return to.

Treating the left hand matrix as a identity matrix, I found it particularly appealing

to think of the algorithm in the following form:
(x+dx,r) = (x,r) — Select L‘*T'l [Eadpass k‘T(x,r) ] ] ] (5)

For example, suppose it is desired to add traces x to the side of a seismic section
in such a way as to avoid unnecessary creation of evanescent energy. Initially, the
traces x could be zero. First, the data space (xr) is two dimensionally Fourier
transformed. A weighting operator Badpass passes evanescent energy with unit mag-
nitude and all other frequencies with zero magnitude. After inverse transforming we
have a proposed (-dx,—dr). We select the dx and abandon the proposed perturbation
to the observed data dr. For this particular problem, iteration has been found to lead

to rapid convergence (and uninspiring extrapolations of the data set).

Gaps in a Time Function

A simple one dimensional illustration of the foregoing concepts arises with gaps in
a time function. Filling the gaps is a classical interpolation problem in which there is
much previous experience. We are not trying to improve on previous methods here.

We are just trying out new methods on an old problem.

As a test case | selected a far offset trace from a marine seismic profile. Before
discarding alternate time points and also points to make up some larger gaps, the
power spectrum was computed. Larger gaps were made by discarding sequential
points, leaving three different sized gaps, one half wavelength, one wavelength, and two

wavelengths.

The first concept for attempting to restore the missing gaps was this: Filling the
gaps with zeros produced a spectrum which contained much more high frequency and
much more low frequency energy than a seismogram ordinarily has. The high fre-
quency comes from the sharp corners at the edge of the gap. The low frequency could
come from a shift of the mean level owing to the unlikelihood that the lost points had
exactly zero mean. The idea that these high and low frequencies should have low power
in the final spectrum led to the idea of minimizing a weighted power in the final spec-

trum. The weight is large (R 1) at high and low frequencies and tapers smoothly to
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zero in between. The results are shown in figure 1.

A second example of the same type makes much more use of prior knowledge of

typical seismic spectra. The weight function was chosen to be

W = diag

[(~]

@D ®

D{(w) D(w)

1+50

1
N

EM blp—a

Here D(w) is the discrete Fourier transform of length N of the original data before
points were dropped off to make gaps. In practice you would have to use the power
spectrum of a nearby seismogram. Notice that for typical values of the power spec-
trum, this weighting function is the inverse of the power spectrum. Thus frequencies
which are very well represented in the original data are very weakly discriminated
against by the power minimization condition. The purpose of the number 50 is to pro-
vide a floor under the spectrum so the inverse will not blow up, or exceed the unity
which is desired by the iterative procedure. Comparing figure 2 to figure 1, we see that

the criterion (B8) is more permissive in the gaps.

Figures 3 to 8 illustrate the same concepts applied to a common midpoint gather.
Here the basic idea is that any reasonable gather should focus when downward contin-
ued. The focus need not be a very narrow one, but there should not be energy left out
at wide offsets. Any energy which is found at wide offsets after downward continuation
is indicative of data not fitting the simple wave propagation model. For example, spatial
aliasing and truncation of the data set at the inside and outside ends of the cable will

cause the downward continued data to be non-zero at wide offsets.

The procedure to extend and interpolate the gather proceeds analogously to equa-
tion (5). Replacing the Fourier Transform operation in (5) by downward continuation

(DC) and the inverse Fourier Transform by upward continuation (UC), we have
(x+dx,r) = (x,r) — Select [UC‘ {Badpass [DC'(x,r) ] ] ] (7)

In this equation the Badpass operator is thought of as zeroing the good information

near zero offset.
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the right, alternate traces have been removed as have traces at near and far offsets.

FIG. 3. Synthetic data (left) is a common midpo
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FIG. 4. Left is the downward continuation of the truncated
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FIG. 7. Left shows a short synthetic zero offset section padded with zero traces on
either side. Right shows a migration of this data. The zero traces will be modified
according o the idea that there should be minimum power in the migrated data off the
ends of the section.
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disappointment to discover that the interior semicircles are now much stronger.
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this figure are much less than on figure 8.



