STANFORD EXPLORATION PROJECT

Report No. 25 October 1980

By J.F. Claerbout, R.W. Clayton, D. Hale, B. Jacobs, G.A. McMechan, L. Morley, R. Ottolini, R.H. Stolt, J.Thorson, and M.J. Yedlin

Copyright © 1980

by the Board of Trustees of the Leland Stanford Junior University

Stanford, California 94305

Copying permitted for all internal purposes of the Sponsors of the Stanford Exploration Project

SEP 25 — TABLE OF CONTENTS

		page
	Missing Data	
Claerbout	Restoration of Missing Data by Least Squares Optimization	1
Claerbout	Extrapolation, Interpolation, and Smoothing of Wave Fields	17
Claerbout	Data Restoration with Parsimonious Models	23
Hale	Spatial Interpolation of Steep Dips	27
Hale	Resampling Irregularly Sampled Data	39
	Wide Offset and Velocity Estimation	
Clayton-Yedlin	Stable Extrapolation of Scalar Wavefields	59
Ottolini	Wave Equation Stacking	63
Thorson-Yedlin	Wave Equation Moveout	69
Jacobs	Examples of Wide-Angle Wave Equation Modeling	81
	Multiples and Slant Stacks	
Morley	Suppression of Hard-Bottom Marine Multiples with the Wave Equation	87
McMechan-Yedlin	Analysis of Dispersive Waves by Wave-Field Transformation	101
Clayton-McMechan	Inversion of Refracted Free-Surface Multiples by Wavefield Continuation	115
	Inversion	
Stolt-Jacobs	An Approach to the Inverse Seismic Problem	121
Clayton-Stolt	A Born-WKBJ Inversion Method for Acoustic Reflection Data	135
Yedlin	Uniform Asymptotic Representation of the Green's Function for the Two-Dimensional Acoustic Equation	159

Stolt	A WKBJ Inverse for the Acoustic Wave Equation in a Layered Medium	167
Stolt	Inversion in an Inhomogeneous Medium	175
	Tutorial and Translations	
Claerbout	Introduction to 1980 Lecture Notes	185
Claerbout	Table of Contents of 1980 Lecture Notes	187
Claerbout	1.1 Exploding Reflectors	191
Claerbout	1.2 Wave Extrapolation as a 2-D Filter	203
Claerbout	1.3 Four Wide-Angle Migration Methods	208
Claerbout	1.4 The Physical Basis	221
Claerbout	1.5 The Single-Square-Root Equation	231
Claerbout	1.6 Mastery of 2-D Fourier Techniques	239
Claerbout	2.0 Why Use Finite Differencing?	245
Claerbout	2.6 Retarded Coordinates	251
Claerbout	2.7 Finite Differencing in (t,x,z)-space	257
Claerbout	3.0 Migration, Dependance on Velocity	265
Claerbout	3.2 Physical and Cosmetic Aspects of the 45-Degree Equation	271
Claerbout	3.7 Absorbing Sides	277
Claerbout	4.0 Offset, Another Dimension	285
Claerbout	4.1 Cheop's Pyramid	289
Claerbout	4.2 Derivation of the Double- Square-Root Equation	299
Claerbout	4.3 The Meaning of the DSR	307
Claerbout	4.4 Stacking and Velocity Analysis	317
Claerbout	4.5 Dip and Offset Together	333
Claerbout	5.0 The U:D Imaging Concept	348
Claerbout	5.1 Shallow Multiples	353
Ottolini	Reflection Seismology Literature in China	369