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IMPEDANCE AND WAVE-FIELD EXTRAPOLATION
[adapted from SEP-16, p. 131-154]

In describing stable physical processes rarely is much attention given to
the stability of the modeling equations. The common feeling is that since the
physical process is stable, so must be any correct and reasonably accurate
modeling equations. This 1s so often true that concern with stability, 1ike

concern with existence proofs, is frequently regarded as highly academic.

Quite the opposite circumstance applies in geophysical data processing
where we are involved with the 7nverse of physical modeling. Modeling, the
way nature does it, is extrapolation forward in time. Extracting information
about the earth’s interior from surface measurements is inverse modeling.
Such extraction 1s really extrapolating information 1n depth. Nature does
boundary wvalue problems in depth, not initial value problems, so we can con-
sider ourselves lucky when we are able to extrapolate downward. When a depth
extrapolation 1is stable then we simply cannot determine the information we

seek.

Instability commonly arises from one of the following two causes:

1) Mathematical equations may have a unique solution, but there may be

a4 ridiculous sensitivity to data accuracy.

2) Approximations which are reasonable and valid in the frequency range

of interest might violate causality outside that range.

In any practical situation there 1s obviously a great need to know which of
the above two situations 1s applfcable. Luckily in seismic imaging we are
usually in case (2). To regain stability the main requirement is that we
learn some stability analysis and use it. Of all the virtues a computational
algorithm can have - stability, accuracy, clarity, generality, speed, modular-

ity, etc. - the most important seems to be stability.
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Beware of infinity!

To prove that one equals zero  you take an infinite series

1,-1,+1,-1,+1,--- , group the terms in two different ways, and add them thus:

(1-1) + (1-1) + (1-1) +

1+ (=1+41) + (-141) +

Of course this does not prove that one equals zero. It proves that we must be
very careful in dealing with infinite series. Next let us have another infin-
ite series where it is perfectly clear that the terms may be regrouped into
any order without fear of paradoxical results. Let a pie be divided 1into
halves. Then let one of the halves be divided in two, giving quarters. Then
of the two quarters can be divided into two eighths. Continue 1ikewise. The
infinite series is 1/2,1/4,1/8,1/16,---. No matter how the pieces are rear-
ranged, they should all fit back into the pie plate and exactly fill it.

The danger of infinite series is not they have an infinite number of
terms but that they may sum to infinity. Safety is assured 1f the sum of the
absolute values of the terms is finite. Such series are called absolutely

convergsnt.

Now consider an example from time-series analysis. The expression
{1 - 22) can be expanded into powers of Z in {(at least) two different
ways. We have

1 2 3
m‘—1+22+42 + 872 +

A SRS SN | FRURE SR S
- 1 22 2
- 37 47

Which of the two infinite series is convergent depends on the numerical value



312

of Z. Numerical values of Z which are of particular interest are 2 = +1,
Z = -1, and all those compliex values of 2 which are unit magnitude, say
1ZI =1 or 2 = exp{iwAt) where w 1is the real Fourier transform variable.
Far such values the first series is divergent, but the second converges. So
the only acceptable filter 1is amiicausal. Can we say that a series expansion
is unique? To do so, we must demand that 1t converges. Complex-variable

theory considers this with greater depth.

But books on complex-variable theory generally fail to point out the
interpretation of infinite series &8s Z-transforms of time functions on the
domain of discretized time. So students may fail to recognize an important
connection between analyticity theory and causality theory which 1s this:
Start from a series expansion containing both positive and negative powers of
Z. To demand that this series converges on the unit circle |Z] =1 1is to
demand only that the time function has finite energy. To further demand that
the series converge everywhere inside the unit circle |Z|] £ 1 (on the disk
{Z| £ 1) forces the function to be causal since any 1nverse power of z

blows up at Z = 0.

Now go a 11ttle further and define an inverse A = 1/B. Whether A is
causal is a question if 1/B converges in the disk. What about the opposite
case where B happens to wvanish somewhere in the disk? For example,
B =1~ 22 vanishes at 2 = 1/2. There A = 1/B must be infinite, that 1is
to say, the series A must be non-convergent at Z = 1/2. So a, would be
nen-causal. A most interesting case, called minimum phase is when both a

filter and its inverse are causal. In summary

causal IB{Z)| < ® for [Z] =1

causal inverse [1/B(2)] < w for |Z| €1

minimum phase both above conditions
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Review of Impedance Filters

Use Z-transform notation to define a filter R(Z), its dinput  X(Z),
and output Y(Z). Then

Y(Z) = R(Z) X(Z)

The filter R(Z) is said to be causal if the series representation of R(Z)

has no negative powers of Z. 1In other words, vy is determined from present

t

and past values of X,y - Additionally, the filter R(Z) will be minimum phase

if 1/R{Z) has no negative powers of 2. This means that x, can be deter-
mined from present and past values of yt by straightforward polynomial divi-

sion 1in

X(2) = %%—

Given that R(Z) 1s already minimum phase, it can additionally be an

impedance function if positive energy or work is represented by

0 < work = X force xvelocity = Z voltage x current
t t
= LI (v, + )
2 t°t tt
t
= coef of 2° of [i [%] Y(Z) + ¥ [%] X(Z)]

1 2r _
= 2—;1'0 Re (X Y) dw
= JRe (XRX)do = JYX X Re (R) dw

Since XX could be an impulse function located at any w, it therefore fol-

lows that Re [R{w)] = 0 for all real . In summary,
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Conditions for a function to be an impedance function:
causality ry * 0 for t <6 OR |[R(Z)|] < ® for|Z| 51
causal inverse |[1/R(2)} ¢ w for |Z] £1
real part of F.T. 1is positive Re [R{w)] = R(ZY + R(1/2) =2 0 real w

Adding an impedance function to its Fourier conjugate we get a purely

positive function (imaginary part is zero) like a power spectrum, say
erZr 28 o] s r, + T i, T e 2 0 for real
ot " 2 0" 17" 22 @
1
R(Z) + R{i] z 0 for real w

which is the basis for the statement that "the impedance time function 1s one

side of an autocorrelation function."”

Impedances also arise in economic theory where X and Y are price and
sales volume. Then 1 suppose that the positivity of the impedance means that

in the game of buying and selling you are bound to lose!

Causal Integration
Begin with a time function Py We define 1ts Z-transform by

-2 -1 2

P(Z) = -rop_,2 7+ pyZ 7 + g+ Pl + P2+
Define an operator -iwAt by
1 . 11 +7
- 10At 21-12

We define another time function q, with Z-transform Q(Z) by applying the

operator to P
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1 + 2
1 -1

o) = 2 P(2)

Multiply both sides by (1-2)

(1 -2) Q(2)

]

1
E—(l + Z) P(2Z)

Equate the coefficient of Zt on each side

i Py * Py
9 7 Oy T 2

Taking pt to be an impulse function we see that qt turns out to be a step
function, that fis,

©++0,0,1,0,0,0,- -

©
]

©0,0,5,1,1,1, -

el
]

So q, ts the discrete domain representation of the integral of Py from minus
infinity to time t. It is the same as a Crank-Nicolson style integration of
the differential equation dQ/dt = P. The operator (1+2)/(1-2Z) is called the
bilinear transform. The a&ccuracy of the approximation was investigated 1n
another lecture entitled “Frequency Dispersion and Wave-Migration Accuracy."

The conclusion was that wAt/2 = tan({wAt/2).

We may note that this 1integration operator has a pole at Z = 1 which 1is
exactly on the wunit circle. This raises the possibility of the paradox of
infinity. In other words there are other non-causal expansions too. To avoid
any ambiguity we dintroduce a small positive number € = 1 - p. Now the

integration operator becomes

1 pl
1 - p2

—
H

L
2

= 21+ 52) [1 oz + )%+ (D)? 4 -“]
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= %+ pL + (»Z)2 + (::Z)3 +

Because p is slightiy less than one this series converges for any value of <2
on the unit circle. If we had chosen a small negative ¢ instead of & positive
one we would have found it necessary ito make an expansion in negative powers

of Z instead of positive powers.

Now the big news is that the causal integration operator is an example of
an 1impedance function. It 1s clearly causal with a causal inverse. Let us
check in the frequency domain that the real part is positive. Rationalizing

the denominator we have

L. LQsen (0 -e/1) (1 -6%) ez 1/2)
T2 (1 - p2) (1 - p/TY T positive

(1 - p2) - 2ip sin wAt
positive

Again 1t is our choice of a positive € which has caused 1 - pz, hence the reatl

part to be positive for all w.

As multiplication by =-iw in the frequency domain is associated with dif-
ferentiation d/dt 1in the time domain, so 1s division by -7w associated with
integration. Now the surprising thing is that people wusually associate the
asymmetric ocperator (1,-1) with differentiation, but the inverse to the causal

integration operator, namely

-1 1 - pl
I -21+pZ

2 - 4p2 + 4(p2)% - 4(p7)% & -

is completely causal, not at all asymmetric, and also represents differentia-
tion. That 1is to say, when the time sampliing At tends to zero or, what 1s the
same thing, when the frequency is sufficiently far from the folding freguency
(where there 1is a pole), the operator I-1 represents differentiation. In
fact, in 1inear systems analysis this 1s often the preferred discrete

representation of differentiation. By analogy with the words definite
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integral this operator may be called the definite derivative. As we will see,
the construction of higher-order stable differential eguations must now be

subject to the rules which we developed for combining impedance functions.

Occasionally it will be necessary to have a negative real part for the
differentiation aoperator. This can be achieved by taking € negative which
means taking p > 1 and doing the infinite series expansion 1n powers of Z_l,
that s, anticausally instead of «causally with positive powers of Z. In
either case the imaginary part will be -7w but the real part has opposite

sign.

Functional Analysis

We will establish, in sequence, the following theorems about exponen-

tials, logarithms and powers of Fourier transforms of filters:

1. The exponenttal of & causal filter 1s causal.

2. The exponential of a causal filter 1s minmimum phase.

3. The logarithm of a minimum phase filter is causal.

4. Any real power of & minimum phase filter is minimum phase.

5. Any fractional power =-1<p €1 of an f1mpedance function 15 an

impedance function.

To establish Theorem 1 we define the Z-transform of an arbitrary causal

function

U(z) = wu, +u, 2 +u, 2°+ --- (1)
and substitute 1t inte the famiiliar power series for exponential
U
B(Z) = e = 1+ U+ —u - (U} < o) (2)

It is clear that no negative powers of Z will be generated so that B{Z} is
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also causal.

To establish Theorem 2, that the exponential is not just causal but also

minimum phase, we consider

+U
B, = e (3a)
B o= oV (3b)
Clearly both B+ and B_ are causal and they are inverses of one another. A

minimum phase filter 1s defined to be causal with a causal inverse. So B+ and

B_ are minimum phase.

Now we set out to establish the converse theorem, namely Theorem 3, that
the logarithm of a minimum phase filter is causal. Egquate the Z-derivative
of (1) to the Z-derivative of the logarithm of (2):

dy 2

a7 C Yt 2u22 + 3u32 + (4a)
U = 1In B (4b)
du 1 dB

iz " var (4¢)

Since we assume B is minimum phase it means that both 1/B and dB/dZ on the
right of (4c) are causal. Since the product of two causals is causal, we have
dU/dZ causal. But clearly dU/dZ could not be causal unless U s causal. That

proves it except for the remote danger that B might converge while dB/dZ

diverges.

On to Theorem 4, which says that any real power of a minimum-phase func-

tion is minimum phase. Consider
Bt = Bl = [e1n BJr - e In B (5)

Since B is assumed minimum phase, 1n B by Theorem 3 will be causal. Scaling
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by & real constant r does not change causality. Exponentiating shows, by

Theorem 2, that Br is minimum phase.

Finally we will prove Theorem 5, that an impedance function can be raised
to any fractional power -1 £ p <€ +1 and the result is still an impedance func-
tion. An 1impedance function is defined as a minimum-phase function with the
additional property that the real part of its Fourier transform is positive.
This means that the phase angle ¢ lies in the range -«/2 < ¢ < +x/2 . Raising
the impedance function ta the p power will compress the range to
~xp/2 < ¢ < xp/2 . This will keep its real part positive. Theorem 4 states
that any power of a minimum-phase function is causal, which is a 1ot more than
we need to be certain that a fractional power of an impedance function will be

causal.

Rules for Compounding Impedance Functions

One of the difficulties in applied geophysics is this: Results may have
physical wutility only in a certain limited range of frequencies, and reason-
able approximations may be made in that range. But 1if a spectrum or impedance
becomes negative outside the applicable range, say near the Nyquist folding
frequency, then the calculation (by Murphy’s Law) will be unstable and hence
useless. Thus Muir’s ru]es1 for compounding impedance functions deserve care-

ful attention. Let R' denote a new impedance function generated from old

known impedance functions R, Rl' or Rz. Muir’s rules are:
il: Multiplication by positive scalar a R'" = aR
. 1
i2: Inversion R =R
. | I
13: Addition R R1 + R2

lpersonal communication with Francis Muir.
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Proofs:

il1: Obviously preserves causality and positivity of real parts of F.T.

i2: Causality is OK since by definition every impedance 1is minimum
phase. Positivity follows since for any w we have
1({a+1b) = (a-ib)/(a2+b2).

i3: Causality and positivity are trivial. Proof that the 1{nverse will

be causal is harder and will be done next.

The easiest proof 1is based on FGDP where the minimum-phase property is
shown to mean that the function is causal and in the frequency domain if the
phase curve does not loop around the origin. Positivity of the real part
ensures that the phase does not loop about the origin. FGDP assumes polynomi-
als rather than infinite serdies, but if wavelets really are transient this

should cause no problem since truncation should then always be reasonable.

An abstract though excellent proof 1is found in complex variable theory.
The analyticity inside the circle of R1 and R2 implies that the sum is
analytic there. Positivity of the real part on the circle and LaPlace’'s equa-
tion inside implies that Re(Rl + Rz) does not vanish dinside, so

|1/(R1 + R2)| < oo inside |Z] €1, which suffices.

Isomorphism with Reflectance Function C

Given any impedance functien R, then the following equation defines an

associated reflectance function C

C = (6a)

We will see that the reflectance function is also causal and that 1t 4s 1less

than unity in magnitude, say

112 - E[%—] c(z) < 1
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Causality follows because the numerator 1 - R is causal and the denominator,
being the sum of two impedance functions, has a causal inverse. The product
of two causals 1s causal. That the magﬁitude of C 1is less than wunity fol-
lows from noting that the magnitude of the numerator is less than the magni-
tude of R and the magnitude of the denominator is greater. Unlike the
impedance function R{(Z), the reflectance function C(Z) 1is not necessarily

minimum phase. An example 1s R = 1 + 2/2, C = -.52/(2 + 1/2).

Equation (6a) may be solved for R:

Ro= T7¢ (6b)

We may not inquire if € = causal and |C}] ¢ 1 alone will ensure that R is

an impedance function.
Multiply (6b) on top and bottom by 1 + C:

(1 - C)(1 + )

R
i1 + CI2
.4 - CC) + (-C + T)
positive
= (real) + (1mag)
Clearly the positive reality is ensured by |C| ¢ 1. The causality follows

since the numerator of (6b) is assumed causal and the denominator is causal
with positive real part (since 1 > |C|). In summary, then, equation (6b)

will reliably produce an impedance function from any apparent reflectivity
function.

Example: Wide-Angle Wave Extrapolation

Let s = -iw denote the causal positive discrete representation of the

differentiation operator, say

{4
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F. Muir introduced this recursion as a means of developing wide-angle square-
root approximations for migration and developed his three rules il,2.3 to show
that every Sn is an impedance function. To see why this works, first note
that the denominator s + Sn is, for n = 0, the sum of two impedance func-
tions. Then 1its inverse is an impedance function, and multiplication by the
real positive constant Xz and addition of ancther s all preserve the pro-
perties of impedance functions. As N becomes large this recursion either

converges or it does not. Supposing that it does, we can see to what it con-

verges by setting Sn+1 = Sn = Soo = S. We have
S = s + XZ
- s + S
2
S(s + 8) = s{s + S) + X
52 = 52 + X2
2 2.

In wave extrapolation problems X2 is vzk: where v 1s the wave velocity

and kx 1s horizontal spatial frequency, namely, the Fourier dual to the hor-
izontal x-axis. The quantities Sn are 1kz where kz is the Fourier dual
to the depth z-axis. The cases n =0, 1, and 2 are commonly referred to as
the 5-degree, 15-degree, and 45-degree equations, respectively. The desira-
bility of S being positive real is related to the fact that it is acceptable
for exp(1kzz) to decay with 2z (when kz is complex), but growth is almest

certainly not acceptable.
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Exact Square Root

The general form for stable extrapoTation problems seems to be

[=%

p
= = -RP (7)

where convergence is assured by the positive real part of the impedance func-
tion R. In reflection seismology there 1s great interest in the square-root

extrapolation operator

~
]}
]

ly

e
n

[N
]

5 (8)

At the moment we are disinterested in the space- oar frequency-dependence of

velocity, so we set v = 1, obtaining

1

R = [(-fw)? + K21% (9)

In (9) we would 1ike a causal representation of the differentiation operator

such as either of the following:

”

21 - pz _ _ , TwAt
at 1+ pz 1 Kp K1 and Z = e
_1& = (IOa,b)
-fw + € e >0

We intend to establish that the following operator is an impedance function
1'.,
R = [(-id)? + k%1% (11)
First note that (-7w) 1is causal by (10), which means that (—15)2 is

also causal. Also, k2 is a delta function at the time origin. Thus R

given by {11) 1s causal. Next, let us look at the phase. Figure 1 shows how
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the phase of (1l1) is constructed from its constituents.

-
im im _
R 1 - .82 »
- = -~
W 1+ .82 8
-1
-1
?_/ - 5 -
-~
~
~
-
A
/
im im
(-i0)?
\/ ) ,//,,, N
im im
(—7:(3)2 + k 2
x
2
ko~ =0.2 \\\\\\
77777 r77r777
Ai:\\\—___"/,///re /”,” re
im et
-] im
] [-imy? + 1k 212
/ x
., .
A re re
A
1
1
1
7
FIG. 1. Complex plane diagram of constituents of the extrapolation operator

R as given by (11).
five times.

The right column is the same as the left column blown up



325

Now we have seen that R2 is causal and that its phase has the "branch
cut” property. That is, the phase of R has the positive real property. One
of the aspects of minimum phase is that the phase does not 1loop around the

origin. This 1s easily seen by inspecting

N N
B = eU(Z) = expiZ U cos kew+ TEZU sin k o
k k k k

explr{m) + 7 ¢{w)]

Here the phase is a periodic function of w, which means that in the plane of
(Re B, Im B) the curve representing B(w) does not enclose the origin. The
branch cut forces R2 to have this property and hence be minimum phase.
Theorem 4 forces R to be causal and minimum phase. That, with the phase
defined by figure 1, proves that R, given by (9), is an impedance function.
(Muir previously established that <come rational approximations to R are
impedance functions, but the proof does not extend to the evanescent region of

the square root.)

Fractional Integration and Constant Q

By equation (6) and Theorem 5 we khow that fractional powers of integra-
tion and differentiation are also impedance functions. In fact, Kjartansson
(1979) has advocated the fractional power as a stress-strain law for rocks.

The conventional rock-mechanics studies begin with a stress-strain law such as

stress = stiffness X strain + viscosity X strain-rate

which in the transform domain is

stress = [(-iw)0 X stiffness + (iw)1 X viscosity] strain (12}

Without for the moment considering the physics of the matter, we can consider

replacing the arithmetic average of the two terms by & geometric average, say
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stress = const X (iw)E strain (13a)

const X (1':..;)‘5—1 strain-rate (13b)

where e <close to zero gives elastic behavior and € close to one gives
viscous behavior. The fact that (-fw)s-l is an impedance function meshes
nicely with the concepts that (1) stress may be determined from strain history
and strain may be determined from stress history, and (2) stress times
strain-rate is dissipated power. Kjartansson (1979) points out that (-1w)7
exhibits the mathematical property called constant @, so that as a
stress/strain law for fitting experimental data on rocks, it is far superior
to the arithmetic average. To see the constant Q property more clearly, let
us express (-7w)Y, in real and imaginary parts:

(_.’-w)'y lwl“r [e'if Sgn(w)/ZJ‘V

lwl" {cos [1;1 sgn(w)] - i sin[%l sgn(w)]}

lwl” [cos[%l] - 1 sgn(w) s1n[§1]] (14)

The constant Q property follows from the constant ratio between the real and
and imaginary parts of this function. Unfortunately, we have been unable to
find a closed form representation for (—1w)1 in the discrete time domain.

Kjartansson (1979) gives the form 1in the continuum as

RY: / vy -l )
IFT(-Tw) ey t >0 (15)

]
=

Although 4 1is permitted to range from -1 to +1, singularities at t

may need to be considered separately.
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The log integration operator 1s one side of the Hilbert Transform.

Since the causal 1integral (6) 1s an- impedance function, by Theorem 2 1t

should have a causal logarithm. Defining its logarithm as U we have

- 1 - At 1 + pZ
Uu(z)y = 1n = 1n 2 1 - o7 PY; (18)

To obtain a time-domain representation of U we proceed as suggested by equa-

tion (4) and take the Z-derivative of any causal Z-transform with

(=%

U 2 3
37 ° u1 + 2u22 + 3u32 + 4u42 + (17)

Applying d/dZ to the right-hand side of (16) we get

du
z

%E [1n(At/2) + 1n(1l + pz) - In(l - pz)]

a

b )
1 +pZ 1~ p2Z

201 + (p2)% + (o2)* 4 -1 (18)

Take the 1imit e - 0 where p =1 - e and identify coefficients of T1ike
powers of Z in (17) and (18). Also substitute 2 =0 in (16) to find U -

We have

-

0 for k negative

In(At/2) for k =0
u = < (19)
2/k for k =1,3,5,7,...

0 for k = 2,4,6,8,...

-

What we see i1s that 1n the time domain the function ln[l/(-iﬁ)] 1s causal
and drops off as inverse time. This is just l1ike one side of the Hilbert

Transform dncluding the discrete domain representation as inverse odd
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integers. In the frequency domain we have

1n[—l~] = -1In{-1w) = -[Inlwl -1 %—sgn(u)]

-Tu

~Injw| + 1 % sgn{w) (20)

Adding (19) to the negative of its time reverse yields the Hilbert kernel 2/k
for k odd. The corresponding operation on (20) naturally gives the ima-

ginary sgn function.

m[_—;;] - 1n[—1—3 - i w sgn(e) (21)

The Hilbert kernal is an asymmetric time function with 90-degree phase shift
and no color change. The log integral is causal with slight color change and
phase shift about 90 degrees in the vicinity of Jw|] = 1. [Do not be confused
by the differing scale factor of 2 between (20) and (21). When |w| = 2,
both are imaginary and odd, so that both have the same ap® phase shift.]

Reflection Ffrom Q Contrast

Reflections arise at an interface of impedance with a well-khown reflec-

tion strength

We often think of the impedance as the velocity-density product, but at non-
vertical incidence the product is divided by the angle cosine of the ray. We
know that (-iw)® 1s also an impedance function, and we may suspect that it

too could be 1inserted into (22) as, say, R with, say, R, = 1. This gives

2 1
€
¢ (clw) -1 (23)
(-iw)€ + 1

Kijartansson (SEP-16, p. 131-140) has shown that this will describe the physics
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of a wave reflected in a medium of one constant Q value from another medium.
Equation (23) 1is also the first term in an expansion for Togarithm, and as e
tends to zero the expansion 1is dominated by the First term. Thus, the

reflected wave takes the form
€ 1
¢ = 7 1og{jﬂﬂ (24)

which 1s expressed in the time domain by equation (19).
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Exercises

1. Take € < 0 and expand the integration operator for negative powers of
Z. Explain the sign difference.

2. The word "1somorphism" means not only that any impedance Rl RZ’ R' can

be mapped into three rules for combining reflectances.

a. What are these three rules?

b. Although C' = CIC2 does not turn out to be one of the three rules
it 1s obviously true. Show either than it 1s a consequence of the
three rules or conclude that 1t is an independent rule which can be

mapped back into the domain of the impedances to make a fourth rule.

3. Consider the fourth-order Taylor expansion for square root in an extrapo-

lation eguation

R L
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5.

a. Will this equation be stable for the complex frequency

-Tw = -fwo + €7 Why?

b. Consider causal and anticausal time-domain calculations with

equation. Which, 1if any, 1s stable?

Consider material velocity which may depend on frequency w and on

the

the

horizontal x-coordinate as well. Suppose that luckily the velocity can

be expressed in factored form v(x,w) = vl(x) Vz(“)' Obtain a stable

degree wave-extrapolation equation. Hints: Try

x<
[l

T
positive eigenvalue of (vlax)(vlax)

Is the Levinson Recursion in FGDP related to the rules in this paper?

so, how? Hint: See Wall’s book on continued fractions.

45-

If



