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DISPERSION-RELATION DERIVATION OF WAVE EXTRAPOLATORS
[condensed from SEP-16, p. 353-359]

A wave-extrapolation equation is an expression for the derivative of a
wave field {(usually in the depth z-direction). With the wave field and its
derivative known, extrapolation can proceed by various numerical representa-
tions of P(z + Az) = P(z) + Az dP/dz. Two methods for Ffinding wave-
extrapolation equations are the ¢transformation method and the dispersion-
relation method. In the transformation method a coordinate frame is found for
the scalar wave equation 1n which the second depth derivative 82,2| may be
neglected. Then the transformed equation is solved for the first-derivative
term az,, giving the desired extrapolation form. In the dispersion-relation
method one seeks various approximations to a square-root dispersion reilation.
Then the approximate dispersion relation 1s inverse transformed 1nto a dif-
ferential equation. Thanks largely to Francis Muir, the dispersion approach
has evolved considerably since the writing of Fundamentals of Geophysical Data

Processing, and it is the subject of our present review.

Substitution of the plane wave exp{-iwt + 1kxx + 1kzz) into the two-

dimensional scalar wave equation yields the dispersion relation

2 2 | e

K, + k= =3 (1)

v

Solving for kz we get a square root
%
w VRx i

k = =11 - [= (2a)

4 v w

To inverse transform the 2-axis we only need to recognize that 1kz
corresponds to az, which means that we have an expression for a wave-field

extrapolater, namely
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vk 2
gz-=1‘§1~[—;’i] p (2b)

Muir Expansion

Regrettably, inverse transforming over x by 1kx = Bx becomes practi-
cal only when the sqguare root is regarded as some kind of truncated series
expansion. It will be shown in a later chapter that the Taylor series is an
unsatisfactory choice. Francis Muir showed that the original 15-degree and
45-degree methods were just truncations of a continued fraction expansion. To

see this, let X and R be defined by writing (2a) as

I RVPRY 2 )
k, = 2@ -xH% = 2% (3)

The desired palynomial ratio of order n will be denoted Rn' and 1t will be

determined by the recurrence

n+l 1 R (4)

To see what this sequence converges to {if it converges) we set n = @« in (4)

and solve

2
X
R°° = 1 = T+ R
o
2
R(L+R) = 1+R ~-X
0 % o
Rz = 1 - KZ (%)

The square root of (5) gives the required expression (3). Geometrically (5)
says that the cosine squared of the incident angle equals one minus the sine

squared. Truncating the expansion leads to angle errors.
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Actually it 1s only the low-order terms 1in the expansion which are ever

used. Beginning with RO = 1 we obtain

.0
5 Ry = 1
)
.0 ¥
15 Ry = 1 -3
2
45° R. = 1 - =X
2 2
, - X
2
2
65° | R, = 1 - X
3 2
X
2-
2
s - X
2

TABLE 1. First four truncations of Muir's continued fraction expansion.

For various historical reasons, the equations in table 1 are commonly
referred to as the 5-degree, 15-degree, and 45-degree equations, respectively,
the names giving & reasonable qualitative (but poor quantitative) guide to the
range of angles that are adequately handled. A trade-off between complexity
and accuracy frequently dictates choice of the 45-degree equation. It then
turns out that a slightly wider range of angles can be accommodated 1if the
recurrence is begun with something like R_ = cos 45° . Accuracy enthusiasts

0

might even have R0 a function of velocity, space coordinates, or frequency.

Dispersion Relations

Performing the substitutions of Table 1 into equation (3) we get disper-

sion relationships for comparison to the exact expression (2a).
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590 k= 2
z v
o vky
15 kz = v 2w
o o
45° | k= 2.
F4 v 2
@ ka
2 v 2w

TABLE 2. As displayed in figure 1 the dispersion relations of table 2
tend toward a semi-circle.

Depth-Variabie Velocity

Identification of 1kZ with Bz converts the dispersion relations of

table 2 into the differential equations

vk2
15° | &y el Xy
9z v 2w
2
k
45° gﬂ = 1 (2. ————~5——E P
P4 v " ka
2 vV 2w

TABLE 3. Extrapolation equations when velocity depends only on depth.
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The differential equations in table 3 were based on a dispersion relation
that 1in turn was based on an assumption of constant velocity. So you might
not anticipate that the eguations have substantial validity and even great
ut111ty when the wvelocity 1s depth-variable, v = v(z). The actual limita-
tions are better characterized by their 1nability, by themselves, to describe

reflection.

Migration methods based on equation (2b) or on table 3 &are called phase-
shift methods.

Retardation (frequency domain)

Retardation 1s a reorganization of the wave equation so that a particular
wave is handled theoretically, hence with no computational artifacts. Compu-
tational errors proportional to the grossness of +the computational mesh
increase with 1ncreasing departure from this particular wave, usually a nor-
mally incident plane wave in a medium of velocity v{z). A planhe wave going
straight down w111 be time-shifted from the surface by an amount t deter-

0
mined from the velocity profile v(z) by

_ Z dz \
tg = Jh TE3) (6}

A time shift t0 in the time domain corresponds to wmultiplication by
exp(-iwtn) in the w-domain. Thus the actual wave field P 1s related to

the time-shifted wave field Q by

P = Q(2) exp[1w Jg -EE—J (7a)
g v(z)

Differentiating with respect to 2z we get

ar  aQ . F dz 1w 2 dz
32 ° 32 exp[xm Jb 7737] +« Q(z) e exp[1w Jb 77;71
or
2 dz iw
PZ = exp[1u Jb 3?;7] [az + 7—] Q (7b)

Next we substitute (7) into table 3 to obtain the retarded equations:
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0 1 1
5 Qz = zero + 1w[v - V(z)] Q
2
15° | q. = -1\—15—‘—0 PPN A S
2 © 20 @ v(2)
2
k
. 1 1
45° | @ = - X Q + 1u[-- = ] Q
2 vk2 v v{z)
w _ _X
v 20
general QZ = diffraction + thin lens

TABLE 4. Retarded form of phase-shift equations.

Lateral Velocity Variation

Having approximated the square root by a polynomial ratio we can now
inverse transform either +table 3 or table 4 from the horizontal wavenumber
domain kx to the horizontal space domain x by substituting (1‘kx)2 = axx
As before, the result has a wide range of validity for v = v(x,2) even
though the derivation would not seem to permit 1t. Ordinarily Vv(z) will be
chosen to be some kind of horizontal average of v{x,z). Permitting v to

become a function of x turns out to be hazardous and is rarely done.
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Splitting

The customary numerical solution to the x-domain forms of the equations
in Table 3 or 4 1s done by splitting. That is, you march forward a small

Az-step alternately with the two extrapolators

a0
5 - lens term (8a)
g% = diffraction term (8b)

Justification of the splitting process 1is found in a later chapter. The First
equation, called the lens equation, is solved analytically, that is

Qlz + Az) = Q(z) exp{iw[v(x%z) Y i)]} e

Observe that the diffraction parts of tables 3 and 4 are the same. 30 we use
them and equation (8b) to define a table of diffraction equations. Substitute

ax for 1kx and then clear ax from the denominators to obtain

5 azQ = zero
.0 vix,z)
15 azQ T -2iw axxQ

=0 _fv{x,z)]2 _ vix.z)
4% {1 [ -21w ] axx} 8,0 = -21w axxo

TABLE 5. Diffraction equations for laterally variable media.
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Time Domain

To put the above eguations in the time domain, it is necessary only to
get w into the numerator and then replace -iw by at. For example, the

15-degree, retarded, v = v equation from table 5 becomes

a2

v 82
8z a9t Q = 2 .2 Q (10)

ax

Interpretation of time t for a retarded-time variable Q awafts further

c1ar1f1cation‘1n a later chapter.

Upcoming Waves

A1l the above equations are for downgoing waves. To get equations for
upcoming waves you need only to change the sign of =z and az. Letting D
dencte a downgoing wave field and U denote an upcoming wave field, equation

(10), for example, takes the form

o
H
roj<
<

zt XX

U
zt X%

TABLE 6. Time-domain equations for down- and upcoming wave diffraction with
retardation and the 15-degree approximation.

It is the upcoming wave equation that always appears 1in migration problems.
Migration is essentially the process of extrapolating waves backward along
their actual path. Because of this and the sign difference in table 6, migra-

tion 1s said to be the inverse of diffraction.



