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INTRODUCTION TO STABILITY

Experience shows that, as soon as you wundertake an application which
departs significantly from the textbook situations, stability becomes a more
vital concern than accuracy. Stability, or its absence, determines whether
the object is available at all, whereas accuracy merely determines the price.
Here we will look at the stability of the heat-flow eguation with real and
with 1maginary heat conductivity. The Tlatter case corresponds to seismic
migration so these two cases provide a useful background aof experience in sta-

bility analysis.

The basic method of stabi11ty analysis 1s based on Fourier transforma-
tion. More simply, we just examine single sinusoidal or complex exponential
trial solutions. If a method becomes unstable for any frequency. then it will

be unstable for real solutions which are just conbinations of all frequencies.

Begin with the sinusoidal function P(x) = P0 exp(ikx). For 1ts second
derivative we have
2
9—; - k% (1)
ox

N
We define k by an analogous expression with the second difference operator

i_% . P(x + Ax) - 2P(x; + P(x - Ax) (2a)
§x (Ax)
= -k%p (2b)

A
Ideally k should equal k. Inserting the complex exponential inte (2a) we get

A
an expression for k:

. P
S [e1k(x+Ax) ek, Tk(x - Ax)] (3a)
2
Ax
(;Ax)2 = 2{1 - cos(kAx)] (3b)
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It i1s a straightforward matter to make plots of (3b) or its square root, which
through the half-anglie trig 1dentity is

M

kAx = 2 sin Egi (3¢)

Series expansion shows that ﬁ matches k very well at 1low frequencies. At
the Nyquist frequency, defined by kAx = w, we have QAx = 2, & poor approxi-
mation to «. As with any Fourier transform on the discrete domain, ﬁ is a
periodic function of k above the Nyquist frequency. Although k ranges from
minus infinity te plus infinity, 22 is compressed into the range zero to
four. The Timits to the range are 1important since instability often starts at

one end of the range.

Explicit Heat-Flow Equation

Begin with the heat-flow equation and Fourier transform over space. Thus

az/axz becomes simply —kz. We have

Finite differencing expliicitly over time gives an equation which 1s ddentical

in form to the inflation-of-money equation.

q - q
t+1 t e 2 )
At = - ko (5a)
oAt 2 .
o [

For stabil1ty the magnitude of should be less than or equal to the mag-

qt+1

nitude of q That requires the factor in parentheses to have a magnitude

less than or e:ual to unity. So there 1is instability when k2 > 2c/{eAtL).
This means that the high frequencies are diverging with time. The explicit
Finite differencing on the time axis has caused disaster Ffor short wavelengths
on the space axis. Surprisingly, the disaster can be recouped if we finite

difference the space axis coarsely enough! The second space derivative in the
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Fourier-transform domain is —kz. When the x-axis is discretized it becomes

—ﬁz. So to discretize (4) and (5) we just replace k by Q. From (1) we see

that 22 has an upper 11imit of ﬁz = 4/&3(2 at the Nyquist frequency kAx = »

So the factor 1in (5b) w111 be less than unity and we will have stabiiity
provided that

A

o Ao K (6)

Ax2

Evidently instability can be averted by a sufficiently dense sampling of time
compared to space. But such a solution becomes unbearably costly if the heat

conductivity ¢{x) takes on a wide range of values << o{x) <« e

min ax’
Luckily, for problems in one space dimension we have an easy escape by turning
to implicit methods. For problems in higher-dimensional spaces we will need

to reconsider explicit methods.

Explicit 15-degree Migration Equation

It turns out that the retarded 15-degree wave-extrapolation equation 1is
1ike the heat-flow equation except that the heat conductivity ¢ must be
replaced by the purely imaginary number 1. The ampltification factor [the
magnitude of the factor in parentheses in equation (5b)] is now the square
root of the sum squared of real and imaginary parts. Since the real part is
already one, the amplification factor exceeds unity for all non-zero values of
kz. The resulting instability is manifested by the growth of dipping plane
waves. The more dip, the faster the growth. Further discretizing the x-axis

does not solve the probiem.
Implicit Equations
Recall that the inflation-of-money eguation
A1 7 9 5 "9 (7)

is a simple explicit finite differencing of the differential eguation

dg/dt = q. And recall that a better approximation to the differential
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equation 1s given by the Crank-Nicolson form

Ue1 - 9 7 ; ﬂi:lii"il (82)
which may be arranged to
g o - (o5 e
or
el 1+ r/2 (8c)
1 - r/2

The amplification factor (8c) has magnitude less than unity for all negative r
values, even r equal to minus infinity. Recall that the heat-flow equation
corresponds to

gAt 2

ro= - = k {9)

where k is the spatial wavelength. Since {8c) is good for all negative r, the
heat-flow equation, implicitly time-differenced, 1s good for all spatial fre-
quencies k. It 1s stable regardless of whether the space axis is discretized
as k = ﬁ and regardless of the sizes of At and Ax. Furthermore, the 15-
degree wave-extrapolation equation will also be unconditionally stable. This
follows by letting r 1n (8c) be purely 1imaginary so the amplification factor
(8c) takes the form of some complex number 1 + r/2 divided by 1ts complex
conjugate. Expressing the complex number in polar form it is evident that
such a number has a magnitude exactly equal to unity. Again we have uncondi-
tional stability.

At this point it is natural to add a historical footnote. When finite
difference migration was first introduced many objections were raised on the
basis of unfamiliar theoretical assumptions. Despite these it quickly became
vary popular. 1 think this was because, compared to other methods of the

time, it was & gentle operation on the data. More specifically, since (B8¢) is
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of exactly unit magnitude the output has the same (w.k)-spectrum as the
input. There may be a wider lesson to be learned here. Any process acting on
data should do as 11ttle to the data as possible.

Leapfrog Equations

The leapfrog method of finite differencing, it will be recalled, is to
express the time derivative over two time steps. This keeps the centering of -
the differencing aperators in the same place. For the heat-flow equation

Fourier-transformed over space we have

Q41 7 941
7AL

(10)
It 15 a bit of a nuisance to analyze this equation because of the fact that it
covers times t-1, t, and t+1 and requires slightly more difficult analytical
technigques. Therefore, it seems worthwhile to state the results first,
because we may lose some of our readers while covering the technique. The
result for the heat-flow equation is that the solution always diverges. The
result for the wave-extrapolation equation 1s much more useful: 1t 1s that
there is stability provided certain mesh size restrictions are satisfied,
namely, Az must be less than some factor times sz. This result is not
awfully exciting in one space dimension where 1{mplicit methods seem 1deal.
But in higher-dimensional space, such as 1in the so-called 3-D prospecting sur-

veys, we may be quite happy to have the Teapfrog method.

The best way to analyze equations over three or more time levels 1like
(10) is to use Z-transform filter analysis. Converted to a Z-transform filter
problem the question about (10) becomes whether or not the filter has zeros
inside (or outside) the unit circle. This kind of consideration 1s necessary
for all possible numerical values of kz. When it 1s done you find that you
are always 1in trouble if k2 ranges over 0 to infinity. But with the wave-
extrapolation equation you find you can avoid instability with certain mesh

A
si12e restrictions because (kAx)2 1ies between zero and four.



