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Vector Spaces

In the seismic experiment we deal with fields that are functions of space
and time. These fields may be scalar (e.g. pressure) or vector (e.g. dis-
placement), so, depending on how many dimensions are being ignored, we may
find functions of as little as one continuous variabie (e.g. x) or as many as
four continuous variables (x,y,z2,t) and one discrete variable (e.g. i, where j
= 1 indicates displacement along the x-axis, j = 2 the y, and j = 3 the 2).
Often the continuous variables are discretized by sampling the functions at
discrete intervals and restricting attention to a finite space-time region, in

which case we deal with functions of up to five discrete variables.

Whatever the exact form of our functions [say wj(x.t)] it is convenient
to think of them as vectors. If we call ¥ the vector corresponding to the
function wj(x,t), then wj(x,t) is the component of ¢ at the particular point
(i.x,t). Each distinct choice of values for j, x, and t gives a different
component of ¢, and the collection of all such components is the vector

itself.

Our vector ¢ will normally reside in a vector space, which is a collec-
tion of functions of the same variables. A 7inear vector space has the nice
property that if ¥ and ¢ qualify for membership, then any 1linear combination

of them1 (e.g. ay + b¢, where a and b are complex numbers) does too.

Hilbert Spaces

Normally, the vectors we like will live in a Hilbert space, which is a

vector space with a few additional properties:

(1) In a Hilbert space, an inner product is definable for any pair of vec-
tors. For example, we may define the inner product <¢|¢> between the pair
of vectors ¢, ¢ to be

Ply> = 2 fdsx J dt ¢’; (x.t) 'l/j(x.t)
i

lwith our definition of a vector, addition and scalar multiplication should be
clearly definable operations.



229

(% indicates complex conjugate.) That’s not the only possible way to
define an inner product; for example, we might want to throw some weight
function wj(x,t) into the integral; but however we define it, the inner

product should have the property

@l = e

As in Euclidian space, the inner product measures the degree to which two

vectors point in the same directien.

(2) A Hilbert space has a definable norm which measures the size of vectors.

If we define the norm |[¢]|]| of ¢ as

() ?

NE2N

1
%

T S a3 Jdt Irltj(x.t)lz
J

then for a vector ¥ to qualify for membership it must be square integr-

ab]e.2

(3) A Hilbert space (a separable one, anyway) has at 1least one countable
orthonormal basis. This means that there is a set of vectors &1 which

are all orthogonal to each other and have unit norm

Wilv> = 8

in terms of which any vector ¥ 1in our space may be expanded:

vV = Z e ¥ = ZH YW
= 1

. i Ti
i=1

2The requirement that vectors in a Hilbert space have a finite norm actually
excludes some of the most wuseful vectors, namely those representing plane
waves. Consequently, we often allow them in the back door to do our dirty
work for us, then when they are done, ask them to leave quietly.
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The coefficients «.. which are just the inner product of ¢ with ¢1’ are

the component of ¢ at each “"point" ¢1.

It may be a bit surprising that ¢ should have a countable (infinite)
number of components in any basis, since, for continuous functions, the
number of space-time points is uncountably infinite. By restricting our
space to vectors of finite norm, however, we have effectively reduced its

dimension to a countable infinity.

(If the dimension of our space is finite, then the property of separabil-
ity holds by definition. Mathematicians generally like to think of Hil-
bert spaces as infinite dimensional, but we have no need to be that

exclusive.)

(4) Hilbert spaces satisfy the Cauchy convergence criterion. Given an infin-
ite sequence of vectors ‘m’ m=1,2,3,..., then
|1¢, - ¢li >0 asm=>wiff |[|¢ - & |I>0as mn=w independently.
This nice property allows us to take limits of vectors more or less with
impunity, which at least partially justifies being so snobbish. Once the
unnormalizable vectors are let in, one has to be more careful about tak-

ing limits.

Subspaces

Our Hilbert space will contain many subsets which are themselves vector
spaces. These subsets, called subspaces, require only that if any two vectars
belong to one, so must all linear combinations of them. In particutar, an
orthogonal basis forms a set of little one-dimensional subspaces, each con-
taining all the vectors proportional to one of the basis vectors. One some-
times speaks of a Hilbert space being the direct sum of these basis subspaces,
since any vector in the Hilbert space may be expressed as a sum of vectors,

one from each basis subspace.
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Dirac Notation (bras + kets)

It is often convenient to write vectors in the form |¢¥>. The first rea-
son for doing this is notational: distinguishing between vectors and numbers
becomes a snap. The second reason relates to inner products. If |¢> s an
ordinary column vector (sometimes called a ket ), we can define <¥| to be the
corresponding complex conjugated row vector (or bra). An inner product
between |¢> and [¢> is just <Plé> (or <¥|-|¢> - get it?) A third reason is
convenience: the vector *1 can be represented by the shorthand |i> as easily
as |¢1> without 1loss of meaning. For example, the plane wave function
[ei(p~x—wt)]/[(2')2] can be represented by |p,w> as well as by anything else.
[The (21r)2 was put in the denominator of the plane wave function to give the

corresponding vector a delta function normalization:

plio'lp.w> = 8(p-p') §(w-w')]

Fourth, components of vectors are naturally viewed as inner products with
this notation. To form the function wj(x,t) from [¢>, the temptation is
irresistible to define a set of vectors |j,x,t> which point to a specific
space-time location and direction. They are defined by the requirement that
d.%,t[¢> = wj(x.t). The normalization of these vectors is easily seen to
be

Ghaxt'liux,t> o= Bjj' 8(x-x") §(t-t")

Like the plane wave vectors, they have infinite norms, so cannot belong to
Hilbert space. (The Hilbert space snobs have taken to calling such vectors
improper, as if they didn’'t really exist at all). Strangely enough, they do
form a basis (though uncountably infinite) of Hilbert, in that every vector
|¢> in Hilbert can be decomposed into its elements <j,x,t{¢>. The parameters
{(j.x.t) in the bra of <{(j.x,t|¢> indicate which element of |¢> we are looking

at, so are analogous to the index in a finite dimensional vector.

The principlie objections to Dirac notation are (1) it tends to make
"improper" vectors look legitimate; and (2) there is absolutely no need to

introduce row vectors (bras) into vector space formalism. (The idea of an
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inner product as a row vector times a column vector is cute, but that’s about
all.) Bringing unnecessary objects into the formalism, so the argument goes,

cdan only serve to complicate and confuse it.

Since I am indifferent to both objections, Dirac notation will be wused

frequently from this point onward.

Vector Representations

A vector |¢> can be considered an abstraction, or we may identify it with
the set of its components [e.g. wj(x.t)]. In general there will be many ways
to decompose |¢y> (one for every basis), and we refer to each possible decompo-
sition as a representation of |¢>. For example the function wj(x,t) is called
the space-time representation of |[y>. The decomposition of |¢> 1into its
plane-wave Fourier components3 wj(p,w) or <j,p,w|y¥> is referred to loosely as
the frequency-wavenumber or f-k representation, or perversely as the
wavenumber-frequency or k-f representation. The decomposition of ¢ dinto 1its
components a1 = (ily> with respect to the as yet unidentified countable
basis which all nice, separable Hilbert spaces have, might be referred to as

the 1 representation.

It is interesting to note that our scalar product, which was originally
defined 1in the space-time representation, could just as easily have been

defined in any other. For example,

3 ¢j(p.w) is the quadruple Fourier transform of $J(X.t):
1
(2%)

ﬁj(P.M) = J'dsx J dt e—i(p.x-wt)wj(x,t)

2

or, in Dirac notation,

{i.p.wlg> = fd3x Jdt <p,wlx.t> G.x, L[



233

@i> = 2 L% S dw #3(p.0) ¥, (pw)

J

= £ % S de <Pli.pe> <4,p.wldd
i

or, for that matter

iy> Z <$li> Gl

i

all represent the same inner product. Thus <¢|¢> depends on {¢> and [¢> only,
and is not tied to any particular decomposition of |¢> and |¢>, space-time, or

whatever.

Linear Operators

An operator is just something which changes one vector into another. To
describe a process which changes the vector |¢> into a new vector, say |¢>, we

A
might define an operator A such that
N
Alg> = |¢>

A
To read this equation we should say, "A, acting on |¢>, produces [¢>."

Exampies of operators are easily found by Jlooking at vectors in the
space-time representation. One operator might correspond to time-~
differentiating the space-time function; another to multiplying it by et; and
still another to squaring it. Many other operators exist which have no simple

space-time representation, but all can be expressed in the abstract formalism.

Many operators cannot be defined for every vector in Hilbert. The opera-
tor et, for example, will give some vectors infinite norm, and differential
operators are defined only on differentiable functions. The set of vectors on
which an operator is defined is 1ts domain, and the set of vectors it can pro-

duce is its range.
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A linear operator has the following nice property: For |¢>, |[¢> 1in the

A
domain of A, for any two complex numbers a and b,

ALaly> + blg>] = aAly> + bA|e>

Differential operators and operators 1like et which multiply a vector’s space-
time function by a fixed space-time function are good examples of linear
operators. The operator which sguares the space-time function of a vector may
be a nice operator, but it is not linear. A particularly relevant linear

operator is the differential operator

2

1 1 8
V —— - —_—
(%) K(x) atz

which 1is found in the scalar wave equation. Neither the domain nor the range
of a linear operator need be the whole Hilbert space, but both the domain and

range qualify as subspaces.

What on earth is a ket-bra? One particularly nice {(or horrid, depending
on your point of view) feature of Dirac formalism is the ease 1in which one can

define funny little operators which look like this:

9> <l

Since it may not be perfectly clear what this creature is, let me explain. In
a finite dimensional space, |¢> <¢| would be a dyad or outer product of a
column vector times a row vector. In Hilbert space, its meaning becomes clear

as soon as we act on some vector with it:

CIv><dl] [o> = <l

Its output 1is proportional to the vector [¢¥>, the constant of proportionality
being the inner product between |¢> and the input vector. Operators like
[¥><¢| are manifestly linear, and in fact are very well behaved as operators

go.
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Miscellaneous Properties of Linear Operators

A A
If A and B are both defined on a vector |¢>, then we can define their sum
A A A 2
(A + BYlY> = AlY> + Bly>. From this definition 1t 1s obvious that
A

A

A A
A+B = B+ A.

AA AA A A
The product AB of two operators is easily definable as AB[¢Y> = A(B|[¢¥>),
AAA A AA AA A
from which it is clear that ABC = A(BC) = (AB)C and so on. It is mot true
AA AA
in general, however, that AB = BA. [For example, (98/8x)f(x) # f{x)(d/06x).]
Operators which do obey this property are said to commute. 1t should be kept
constantly in mind that most operators do not commute and that in any product

of operators the operator on the right is to be applied first.

Elements of Operators

Like vectors, operators may be decomposed into a set of numbers or ele-
ments. If 2 acting on |¢> yields a vector XI¢>, then we may, for any
vector |[¢>, define the inner product <¢|A|¢). (Dirac notation becomes a bit
confusing at this point, since the operator 3 is sandwiched symmetrically
between the two vectors, looking equally anxious to act on either one. One
simply has to remember that it acts on the vector to 1ts right.) Once <¢|£|W>
has been evaluated for all possible |[¢> and |¢>, everything there 1is to

A

A
know about A has been found. We say that A is completely determined by its
elements <¢[A|P>.

Operator Representations

There are a lot of vectors in Hilbert Space, so finding <¢I£I¢> for ali
l$>, 1 would appear to be a tedious business. Fortunately, it is not
necessary to evaluate all the elements of ain operator in order to determine
it. In fact, we need only know the elements with respect to a single ortho-
normal basis. Suppose that the set of vectors li>, i=1,2,... are known,

having the properties of orthonormality

iy o
Gili 811,
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and completeness

> = 2 |id|
i

A
for any |¢>. Then if <(ilAJi'> = Aii' is known for every i, i', any

A
matrix element of A may be constructed:

A A
PIAIY> = 2 <@lid> <P[Ali'Y> G W
i,

A A
We call the collection of elements <i|A|i'> to be the representation of A

in the i-basis.

A
The space-time representation of an arbitrary operator A is the collec-

tion of elements

<J.x,tlxli'.x'.t'> EOA(G,x, t]3',x",t")

As for any other basis, once these elements are known the operator is com-

pletely specified.

A
The unit operator. The nicest operator around is the unit operator I,

distinguished by the fact that it does absolutely nothing:

A
e = | for any |y

Its representation in the i-basis is

A
3 1 -
A = 8,

Its space-time representation is

N
Gux,tiIfa',x',t'> = 8(x - x') 8(t ~ t")

BJJ'
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Local Operators and Differential Operators

A class of operators which behave very nicely in spacial representations
are the so-called 7ocal operators, which amount to multipiication by some
function of position. Suppose ? is the operator which maps space-time func-
tion wj(x,t) onto f(x) ¢j(x,t). The space-time representation of ? would

usually be said to be f(x). In Dirac notation, we would write:

G tIFIe T F(X) <4 W EF(X) v, (x.1)

A
Strictly speaking, however, the space-time representation of f 1is the matrix

of elements

A

F(x) 8,0, B(x-x") B(t-t")

The values of the function f(x) are the diagonal elements of this wmatrix.

A
Since all the other elements are zero, all the information about f s con-

tained in the function f(x) and we are justified in thinking of it as the

A
space-time representation of f.

A
A similar situation holds for differential operators. If Dt is the
operator that effects a time derivative, we would say (loosely) that 8/8t is
A

the time representation of Dt' writing

a g
SN RIS RS>

d
3t 'a_'{"J(x-t)

A~
More strictly, the space-time representation of Dt is the matrix of elements

: A....:Q__ | PN RO | = _l.a__ -t !
A%, tID 1dt XLt at IXtlataxttt> o= 8, Blxex!) e B(t-tY)

though the former, more concise form is in practice preferable.

Differential operators are non-local in that their space-time matrices

contain off-diagonal elements. A1l non-zero elements are very near the
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diagonal, however, (the derivative of a delta function can be viewed as the
Timit of a bi-diagonal form), so the differential operators enjoy great sim-

plicity of structure and form.

Operator Inverses

An operator is just a mapping between two subspaces. If a particular

mapping is unique (i.e., if

A A

Aly> = Al only if > = |¢> )
Then an inverse mapping can be defined:

A
Ay = [ if Al

[v>

We then have

I\_ll\

A CAl> = P
A
for all |¥> 1in the domain of A, and
A -1
AR > = >

A A
for all |4> in the range of A. If (and only if) the domain and range of A
are the whole Hilbert space, we can write

AA_l A

ALl
A A = AA = 1

Note that linear operators give unique mappings provided no non-zero vector
maps onto zero so unique inverses are definable only for such operators. For
the general operator we may be able to define many inverses. The inverse of a
product of operators, all of which have 1inverses, 1is easily found:

AN _ - -
)yl = pIlal,
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Adjoints

The adjoint of an operator is defined as its complex conjugate transpose.
A A
The adjoint AT of the operator A is most easily defined through its ele-

ments:

WA = WA

Since the complex conjugation of an inner product fiips the bra and ket, we

can view the adjoint as explaining the effect of operators on bras:

WIAS = WIAS* = @A = <@l-ATIe

In fact, we could define the adjoint by saying that if <¢| is the bra
corresponding to l¢>, then <¢I;\‘Y is the bra corresponding to £|¢>. That
definition allows us to think of 3 in <¢|£I¢> as operating in either direc-
tion. (It is at this point that many people condemn Dirac notation as hope-
lessly confusing.) As for the inverse, the adjoint of a product of operators
is the product of the adjoints, in reverse order: (Rg)? = E*R’.

The adjoint of a complex number is clearly its complex conjugate. A com-
plex function of space and time has as its adjoint its complex conjugate func-
tion. To obtain the adjoint of a differential operator we integrate by parts
the dinner product, discovering, for example, that the adjoint of 8/8x is
-9/0x.

Self-Adjoint (Hermitian) Operators

An operator which is its own adjoint is said to be self-adjoint or Hermi-
tian. Examples of self-adjoint operators are real numbers, real space-time
functions, and second-derivative operators. The scalar wave equation operator

1 1 82

Cp(x) K(X) gt2

is self-adjoint, which is fortunate, since self-adjoint operators have some
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nice properties.

Unitary and Isometric Operators

A unitary operator necessarily has alil vectors in its domain and range,
and has the additional nice property: 1ts operation does not change the norm

A
of vectors. That is, for U to be unitary, we must have

A
[IU ¢I] = [l¢ll for all vectors ¢

Since we often try to set things up so that the norm of a vector measures some
conserved physical quantity, such as energy, the operators which describe phy-

sical processes are often unitary.

A A ?

ATA
A unitary operator has the property UU = 1 = UU

An isometric operator also preserves the norm of vectors, and obeys

AtA A

uu = 1. However, 1its range wmay be smaller than its domain, leading to
AAY

uu # 1. On a finite dimensional space, all isometric operators are in fact
unitary.

Projectors

Some of the nicest operators around are the projectors aor projection
operators. The projector onto a particular subspace is an operator which does
nothing to the vectors in that subspace, but which wipes out (maps onto =zero)
any vector outside the subspace. For the general vector, which has components
both inside and outside the subspace, the projector yields the component

inside the subspace.

For any vector |¢>, we can define a projector

b. [$><p]
ITNE

which maps onto the little one-dimensional subspace of vectors proportional to

A A
|¢>. Obviously, P¢|¢> = |¢>, and P¢I¢> =0 if <¢lg> = 0.



If the set |i>, i=1,2,... 1s an orthonormal basis, then for each

vector |i> we cah define a projector

P_i = i><1]

The compieteness relation for this basis

[¥> = Z |id<i| for every |y
i
then becomes
A A A
> = Z Pi ¥>  for every |¢> or 2 P_i = 1
i i
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basis

Likewise, for the space-time basis ]j,x,t> we can define projectors

(albeit "improperly")

A
P(3,x.t) = |3.x.t><i.x,t]

and note that

n

A N
T a3 LAt 14 05< %0t 2 fd3x [t Pld.x.t) = 1
J J

Eigenvectors and Eigenvalues

A
A vector |¢> 1is said to be an eigenvector of an operator A if

XI¢> = al {a a number)

A
i.e., if A maps |[|¢> onto a vector proportional to [¢>. The number

A
general, complex) is called an eigenvalue of A.

a

(in
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Examples: Projectors have eigenvalues 1 and 0: their eigenvectors are
vectors in or orthogonal to their subspace. The constant velocity-density

wave-equation operator

A Ao
vo 8t
has as (improper) eigenvectors plane waves e1(p-x-wt) with corresponding
eigenvalues wz/v2 - pz. The solutions to the source-free wave equation are

those plane waves with eigenvalue zero.

The eigenvalues of a self-adjoint operator are obviously real. Moreover,
two eigenvectors of a self-adjoint operator with different eigenvalues are
necessarily orthogonal4: If ClQ) = 212>, and CIQ') = 22, then
(Q'IEIQ) = Q<T2> = 2'<2'|2> which implies that <2'|%2> = 0 if 2#2°'.

This property may lead one to suspect that an orthonormal basis might be
constructed from +the eigenvectors of a self-adjoint operator, and in fact,
with a few reservations this turns out to be the case. One reservation is
that the general operator will have both proper and improper eigenvectors, so
our basis will have to contain both kinds. If that is OK, another reservation
has to do with degeneracy: 1in general, there will be many eigenvectors with
the same eigenvalue. For example, the eigenvectors of the constant velocity-
density wave-equation operator are the plane-wave vectors |[p.w>. ATl the
solutions to the source-free wave equation have eigenvalue zero. Ta specify
which plane wave we are dealing with, another oaperator 3 ~ =iV 1s required.

A

The plane waves are also eigenvectors of p with eigenvalue p.

In general, to deal with degeneracy, a "complete set" of commuting self-
A
adjoint operators dis required. The eigenvectors of L with eigenvalue 2

A
form what is called a degenerate subspace (degenerate with respect to L, that
is). We can always find a basis [%, k>, k=1,2,... which "spans" the sub-
A A
space, and another operator K may be defined such that KIZ, k> = k]2,k>.

A A
The operator K, once defined on all of Hilbert space, must commute with L

4 Some non-self-adjoint operators may also have orthogonal eigenvectors. The
necessary requirement is that the operator commute with its adjoint (that is,
be a normal operator. Don’t ask me where that name came from.)
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A A
since it shares eigenvectors and together the eigenvalues of K and L deter-

mine a unique (within a scale factor) vector.

Modulo these reservations, a complete set of orthonormal basis vectors
Fa
can be constructed from the eigenvectors of L. In fact, we may define, for
A A

each eigenvalue 2 of L a projector PQ onto the subspace with that

eigenvalue, and write a completeness relation

bearing in mind that some of that sum is probably actually an integral over

"improper" states. A common notation is to write

exploiting the similarity between this projector and a Kroniker delta (for

proper vectors) ar a delta function (for improper vectors).

Spectral Decomposition and Functions of Operators

A
Once a basis has been found for a self-adjoint operator L, that operator

can be expressed in terms of its basis vectors as

L S P
= Q
9 Q

A

’ A
(Think about it. For any eigenvector5 12, > of L, ¥ Q'Pi'iQ,-> = 2]9,->,
Q! N
so for any vector which is a linear combination of eigenvectors of L, the
A A
action of 2 2 PQ must be the same as L.) This equation 1is the spectral
Q’ A
decomposition, so called, of L.
A
The spectral decomposition of L allows an easy definition of functions

(e.g. square root, inverse, square, etc.) of an operator. We write, for an

°We use the dot to signify any other parameters besides 2 needed to uniguely
specify a vector.
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arbitrary function f,

Green’'s Functions or Resolvents

One function of special interest is the Green's function or resolvent of

an operator. Define

A A 1 A FaS
G{(z - L}y = EWB(Q-L)

2

A A A
G(z - L) is seen to be an inverse of the operator z - L:

6(z - L) = (z -0y}

It is well defined for any complex number 2z which is not an eigenvalue of
A A
L. As 2z approaches an eigenvalue 92 of L, however, 1/{z-2) blows up.
A A A
Unfortunately, G 1is most useful when 2z 1s an eigenvalue of L. IFf L is
A 1

‘/ -
the constant-frequency wave-equation operator L ~ k° ¥ - ;——sz,

for example,

then the equation

A A A A
(0 - 1) B(w? - 1) = 1

A
is the equation for an impulsive source of unit magnitude, and we see G to be
an impulse response.

A
Fortunately, the fact that (wz - L) has zero eigenvalues does not mean

there is no inverse; it just means the inverse is not unique.

Here are a few possibilities faor G:
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Principle value Green’s function:

6 (% - L) 2"1
P grag ¥ - ¥

5(or - 1)

Exploding and imploding Green’'s functions:

6 (2 - L 1m % e 8(2 - L
fH -0 = lm o 2xieg (ef -1

one can note that

o>

1 A A A A
= -2--(G+ + G_), and G+ = G

One may also define ather Green’s functions. Each corresponds to a
different physical situation, and it is necessary to choose which

one fits a particular circumstance.

The Lippmann-Schwinger Equation and the Born Series

A A
Suppose we have two linear operators L1 and L2 differing by an operator

<>

The resolvents (Green’'s functions) for L1 and L2 are then simply related by an

equation called the Lippmann-Schwinger equatian:

A A A A A N A

Gi(Q—LZ) = Gi(Q—Ll) + Gi(Q—Ll) VGi(Q—LZ)
or, equivalently,

A A A A A A A

Gi(Q-Lz) = Gi(L-Ll) + Gi(Q—Lz) VGi(Q~L1)

It should be noted that in general the two G's do not commute with each other
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N
or with V, so the identity of these two equations 1s not a trivial observa-

tion.

The Lippmann-Schwinger equations are widely used in scattering theory as
a prescription for constructing an unknown Green’s function from a known one.

A A
Formally, we may solve for Gt(Q—LZ) as

8 (2-1 1 -6 (2e-0.) v1 L6 (e-t
Sty s -8l 7 E D)

;A A I\ml\ i)
2 [Gi(Q-Ll) v] 6,(2-L))

Of course this bit of formalism works only if the inverse of 1 - gi(Q-Cl) ?
exists and is series-expandable, which depends on the patential operator V
Eeingnsma11 in some sense. This series expansion for ei(Q—Cz) in terms of
Gi(Q—Ll) is called the Born series. It is used by modern physicists with

very little regard as to whether it converges or not.

The Born approximation amounts to truncating this series after the second

term:
~ A A A AA A
G {(2-L.) = Gt(Q-Ll) + Gt(Q—Ll) VGt(Q-Ll)

Since higher-order terms in the Born expansion become very hard to evaluate,

the Born approximation 1s widely used. We may also write down a Lippmann-
A

Schwinger equation for the eigenvectors of Ll'
A

A
and L2. Suppose for simpli-
A
city that L1 and L2 have only improper eigenvectors {(no “bound" states) and

that their eigenvalues cover the same range 2 e (0,0). If [2,°> is an eigen-
A

A
vector of L1 with eigenvalue 1, then two eigenvectors lQi.-> of L2 with the

same eigenvalue are found from the equation

A N A
12> = |%.> + Gi(%—Ll) Vig, . >
It can be shown that this equation defines a unitary mapping (isometric if

"bound" states exist), so the set of all |2+, > {or |2-,.>) obey the same

orthogonality and (if there are no bound states) completeness relations as do
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the set |2,->.

The ? Operator

Another operator often encountered in scattering theory is the T opera-
A

A
tor. It is defined from V and G as

A

A A A
i(Q) = V+V Gt(Q-L v

-$>

5)
Un11te 8. which depends only on one operator CZ' ? is a function of both Cl
and L2'

A useful operator identity is found by premultiplying this equation by
A
Gi(Q-Ll):

6,(2-L) T (2) = [Gi(Q,—LI) + VGi(SL-Lz)] v

A A A
= Gi(Q-Lz) v

Postmultiplying by the same operator yields another relation

A A A A A A
Tt(Q) Gi(Q-L) =V Gt(Q-Lz)

A
Substituting these relations into the defining equation for T gives us another

pair of Lippmann-Schwinger equations:

T (9)

u
<>
+
<>
o>
-
v
>
—
St
-—>
-,
©
S

A
One 1s at tiberty to expand these equations into a Born series Ffor T if

desired.

A
From the defining equation for T it is clear that it may be computed if

A A A
Vv and G(Q-Lz) are known. The converse can also be seen to be true. Start
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from the Lippmann-Schwinger equation for G:

A A A A A IS A A
G(Q—Lz) =z G(Q-Ll) + G(Q—Ll) VG(Q—LZ)
and substitute the identity
A A A A A
VG(Q-LZ) = T(Q) G(Q—Ll)
to obtain
A A A n Fa A N A A
G(Q-Lz) = G(Q-Ll) + G(Q—Ll) T(2) G (Q-Ll)

A A A A N
which gives G(Q-Lz) once T(2) and G(Q-Ll) are known. This equation figures in

the solution of the seismic inverse problem.

A A

T is also invalved in the mapping of eigenvectors of L1 onto the eigen-

A
vectors of L2. Namely,
A A
Ti(fl) [2,:> = Vl9vi. >

A
as 1s easily seen from the defining equations for T and IQt,~>. In terms of

matrix elements

A
<Q',~ITi(R)|2,-> = <2, -V L, D>
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White to play and mate in 10 moves - or lesst White to play and win. This is a tough one.
(Alan Gottlieb) (K.A.L. Kubbel)

Answers in next report.



