MINIMUM-ENTROPY DECONVOLUTION WITH THE EXTRINSIC POWER NORM

Lawrence C. Morley

Abstract

Synthetic and real examples of minimum-entropy deconvalution show that
maximization of "extrinsic power" gives good results for the debubble problem.
The optimization technique used is found to be both rapidly convergent and
robust. These results give encouragement to planned applications to multiple

suppression.

Introduction

Geophysicists 1ike to see order in their data. This 1is not a naive
attempt on their part to deny nature’s chaotic tendencies. It simply reflects
the fact that geology is well represented by relatively large homogeneous

regions separated by narrow "catastrophic" boundaries.

Recently, this idea has found expression in the "minimum entropy" (ME)
concept and has been applied to the debubbling of source signatures from
marine data (Wiggins,1978;Claerbout, this report and SEP-15, p. 109-122) The
term minimum entropy, as it has been used up until now in deconvolution, is a
strictly generic one. It merely reflects a general desire to tailor the histo-
gram of the data so as to increase large amplitudes and decrease small ones -
thereby increasing the overall apparent order of the data. The usual approach
calls for selecting an appropriate functional of the data and optimizing it

via a linear filter in an iterative fashion. A most important (but not fully
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understood) constraint on this whole procedure is the length of the Filter.
In fact, a finite filter length is the only thing that keeps the algorithm
from eventually carrying things to the-extreme - extracting the maximum data

value and zeroing everything else.

There is nothing sacred about the functional or inequality used. The fun-
damental entity in any ME algoritm is the gradient with respect to the data
values. The form of this gradient determines whether or not the descent fis

robust.

A review of some of the methods proposed to date is presented in Table 1I.
The varimax norm has a gradient proportional to x3. The recoghition that it
might be advantageous to decrease small amplitudes as well as drive up big

ones led to the development of the parsimony and bit count approaches.

Since bit count has a gradient that is unduly concerned with small values
it is necessary to clamp the minimum absolute value of the data to some non-
zero value - forcing the introduction of another arbitrary parameter. Both the
parsimony and the extrinsic power norms avoid this problem by having a gra-

dient which goes io zero with the data values.

Theory

Before presenting any results we will give a brief description of the
algorithm. The reader 1is directed to Claerbout’s ME essays in this report for

a more complete discussion.

Our deconvolution model is x = y*f where y is the observed seismogram, f

the inverse filter, and x the deconvolved trace. We choose the norm

S=2p11np1-(2p1)1n E >0 (1)

where P represents the squared seismogram, x?, or, alternatively, the
envelope of X This 1is termed the "extrinsic power" norm. Maximizing this
parameter minimizes the degree of homogeneity in the data. The norm is zero
iff all data amplitudes are identical. It has the additional property that if

a trace is subdivided into time bins, the aggregate value of S for the whole
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trace will be the sum of all the S values associated with each bin.

In the lexicon of thermodynamics, ahy system parameter which behaves in
this way (e.g. - volume) is termed an extrinsic parameter. This contrasts with
"“intrinsic" system parameters, such as pressure, which remain constant for

each individual subsystem.

To maximize S we proceed by steepest descent, perturbing x by an amount

as os apt
ix a = 3 (2)
R Eix‘1 ¢ apt axj
In matrix form we have
5x a Gx (3)
where
as
G = diag 55—': (4)

We would, however, like to constrain 8x so that enerqy is conserved. To first

order this condition is

xT5x = 0 (5)
The first order change in S due to a change 8f in f is
s apt T
8S = S(x+8x) - S(x) = 2L — x—8x. a &8x Gx (6)
it apt ax;i J

We wish to maximize 8S subject to (5). The appropriate Lagrangian 1is

LOBF.N) = (BF)TY ax + A(BF) Y x (7)
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Y, in equation {(7), is a matrix of shifted rows of y so that x = Yf.
8x = Y8f since 8Y = 0. Zeroing the gradient of (7) with respect to 8f and
. X T . -
premultiplying by f gives

A= =X, BXD /L0, XD (8)

Thus, the constrained gradient of S with respect to the data values is

(G + M )x and our basic equation (3) becomes

Y8F = (6 - I<x,Gx>/<x,x>)x (9)

This equation is now solved in a least-squares sense for a finite length

8f using standard Wiener-Levinson techniques.

In practical terms, the main difference between the following results and
parsimony is not in the choice of gradient. The parsimony (Sz) gradient and
the extrinsic power gradient are in fact identical. The main difference is 1in
the selection of a descent magnitude. The magnitude of the descent in the fol-
Towing examples was chosen to be "« 8§f." &« was initially set to 1 and changed
each iteration by a factor between 0.5 and 1.5 according to the formula

« (N + 2signag(dx,dx ))/2N (10)

new = “o]d

signag(dx,dx ) is the number of sign agreements {(Hamming distance) between the

new and old constrained gradients, and N is the number of time points 1in dx.

Results

Figure 1 contains the results of ME deconvolution of a synthetic with
both 0 and 20% peak-to-peak noise. The noisy descent appears to be remarkably
robust. It was necessary to clamp the diagonal of the data autocorrelation
matrix {Y) by 1% to 1% before performing the noisy division
YYBF = YI(G + AI)X.
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The next example (figure 2) 1is of +the debubbling of a USGS marine
dataset. Figures (2a) and {(2b) are the original and predictive deconvolved
data, respectively. (2c) and (2d) are bath ME deconvolved with the algorithm
described above, but 1in (2d) a multiplicative ramp was applied to the first
breaks to attenuate the strong high- frequency component on the middle traces.
There 1is a remarkable difference between (b) and (d) in terms of the number
and simplicity of up-shallow events. On the initial data we can see high fre-
quencies on the first breaks of the centre traces which do not appear to fit
the convolutional model. It is generally recognized that ME deconvolution s
most sensitive to (high-amplitude) first arrivals. In most cases this is good
because the first arrivals have a high signal/noise ratio. In this case it 1is

a decided drawback.

As figure 2c¢ demonstrated, MED can be expected to run into trouble when-
ever high frequency and high amplitude are well correlated. In fact, any data
with sharp spectral peaks will only have those peaks reinforced by ME deconvo-
lution 1if some pre-whitening is not first performed. The Gulf model tank data
(figure 3c) is a good example of this. Disaster could only be aveided by first
running predictive decon (b) on the original data (a). The data of figure 3b
were then input to the ME decon program described above to obtain figure 3c.
One problem in doing this deconvolution was the selection of a good length for
the inverse filters. This is a problem common to both predictive and ME
deconvolution. In both deconvolutions good results were only obtained with

relatively short filters (1/2 timing line in length).

Conclusion

These results indicate that the extrinsic power 1nequality provides a
useful gradient for the minimum-entropy debubble problem. An effort is now
being made to apply this to marine multiple suppression using the Noah’s model
- following up on a suggestion by Claerbout (this report). Unfortunately, con-

clusive results were not available at report time.
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FIGURE 3 - GULF WATER TANK DATA
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