SEVEN ESSAYS ON MINIMUM ENTROPY

Jon F. Claerbout

A geophysicist peering into a microscope viewing biological +tissue will
have no trouble focusing the microscope. The focusing is not done by measur-
ing the focal length of the lenses and matching the distance to eye and speci-
men. The focusing is done by enhancement of some characteristic of the image.
This 1is possible despite the likelihood that the geophysicist has 1ittle or no
previous experience with the image or microscope. What characteristic of the
image is sought? Perhaps it is short spatial wavelengths, perhaps bandwidth
in spatial spectra, perhaps dynamic range in intensity. In Minimum Entropy
(ME) data analysis research we try to determine physical parameters (such as
distance or focal Jlength) by means of adjustments which sharpen an image.
Despite visions of scientific precision conjured up by the word "entropy" our
work is still largely empirical, though I believe it 1is very promising. These
essays give an account of current efforts to apply and systematize +this kind
of inductive 1learning in reflection seismology. The essays are largely
independent of one another. They may be read out of seguence and without

reference to earlier work. Titles with brief descriptions are:

1. Applications of ME Processing - A new family of processes 1in reflection

data analysis are possible.

2. Geometric Inequality versus Power Inequality - A comparative analysis of

two previous approaches.
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3. The Basic Debubble Algorithm - How to do it.

4, Non-stationarity: Application to a Common-Shot Profile - An attempt to

specify a production program.

5. Seismogram Inversion - How to use ME to zap multiple reflections.

6. ME Extrapolation and Spectrum - Counterpoint to Burg's maximum entropy
method.

7. Convex Inequalities and Statistical Mechanics - Physicists and chemists

had been wusing the concept of entropy long before information theorists
took it up. Here is what they mean by it and how it relates to our 1mag-

ihg concepts.

1. Applications of ME Processing

The major ME success to date has been debubbling. Is it a fortunate
accident that the best subjective view of biological tissue gives an accurate
matching of the focal length to distance? The results of analysis of syn-
thetic data and the results of near-field recording show a similar fortunate
accident, that source waveforms found by ME in the far field usually provide
an accurate match to the correct waveforms. Errors are very much smaller than
those of the older least-squares methods. Indeed, judged by the new standards
of ME, it s fair to say that "least squares doesn’t work." The successful
application of ME to debubbling points out the potential for many other appli-

cations of ME ideas in geophysical data analysis.

Time-variable deconvolution. Absorption is a convenient parameter to
vary, and it is simple enough to test the entropy of several different absorp-
tions and select the best. Cosmetically the effect would be that of time-
variable filtering. Assuming the validity of that time-honored process, the
results should be improved whether or not the "best" absorption turns out to
be related to dissipation or to some other poorly understood scattering

phenomenon.

Coloring 1in ky-space. The square-root expansion used in migration con-

tains w, hence possible energy absorption (or growth) in each term. The main
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absorption occurs in the so-calied 5-degree term, as above. A different role
is played by the w in the diffraction term {see Morley, SEP-16, p. 109).
Adjustment of this term can have the cosmetic effect of recoloring in ky-
space. (Actually it would be ks/w-space.) Why not give it a try? The best
value, once determined, can be physically interpreted as compensation for the
differential absorption between hyperbola tops and flanks. Anyway, even if
the physics is inappropriately understood, maybe it will boost up some of

those fault-plane reflections which have been suppressed by CDP stack.

Velocity. Iterative adjustment of the migration velocity may be very
economically achieved by a number of methods. Cosmetically this is a phase

adjustment in ky—space.

Inversion. 1terative adjustment of reflection coefficients so as to
predict and hence subtract multiples is the most ambitious of the proposed
applications (because there are the most adijustable parameters). But the
number of adjustable parameters 1is not really very many more than are found in

the debubbling process, which is already very successful.

A1l of the above suggestions amount to saying, "take physical parameters
to vary, then use minimum entropy to determine values." Some improvements may
be barely perceptible, best seen with "unclipped" displays. Sometimes the
processing sequence may be important. A1l are worth trying, and others will

be found.

2. Geometric Inequality versus Power Inequality

In SEP-13 an ME deconvolution program was developed based on the power

inequality

N p (2.1)
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Let € approach zero and constrain the p1 to sum to unity. Then, forcing
this 1inequality towards -equality turns out to amount 1o extremalizing

Zp Inp. It resembles entropy.



160

In SEP-15 another ME deconvolution program was developed based on the
geometric inequality

M=

N

n N <l (2.2)
. i N . i

i=1 i=1

Constrain the P, to sum to N. Then, forcing this inequality towards eqguality
amounts to extremalizing 2 In p. Defining the P, as seismogram power as a
function of time t=i we could properly describe this process as extremalizing
information defined by counting bits. Alternately, sorting the seismogram
from smallest to largest and defining the positive intervals as Py the sum
of n Py could be regarded as an estimate of the expectation of log proba-
bility - in other words, Shannon's definition of expected information E[1n
(p)] = J p(x) In[p(x)] dx. Satisfactory deconvolution programs were based on
either (2.1) or (2.2). Although I tried very hard, I was unable to develop a
satisfactory program based on the Shannon approach. No one at SEP has yet
tried inserting estimated probability functions into (2.1). At this point the
geometric inequality seems to have a better philosophical basis than the par-
simony er power inequality. But the geometric inequality does have a flaw.
Since we are interested in minimum entropy, that is, driving the inequalities
as far away from equality as possible, you can see that a single vanishing p_i
on the left side of (2.2) could cause trouble. Trouble may be reduced by hav-
ing p1 refer to a cell of sufficient size, or by incorporating some kind of
noise threshold, but these raise more guestions than they solve. That is why
it is worthwhile to re-examine the philosophical basis for the power inequal-
ity (2.1) as e goes to zero. Repeating the derivation using a bit more care

for clarity and the scale factor, we take the log of (2.1)

1 Tn l g
l + e N . P
i=1

l+e
i

1
2 1In ﬁ-z P, (2.3)

Take a Taylor series on the left side about e€=0 and subtract the lead term on
both sides.

In +3 AR (2.4)
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Note that for any constant a

. g_[e1n a]u”
dx T odx

_ Tn a]u du
= 1In{a) [e i

o
| =

u .
= 1n(a) a oy (2.5)
Divide (2.4) by e. Differentiate using (2.5). Then let € + 0 to get
Zp. Inp.
TS IS R (2.6)
N i z P, )
Scaling through by 2 p we now define the "negentropy" S as
N 1
S = 1?1 P In Py - ES pi] 1n[ﬁ 2 pi] (2.7)

As a quick check, if all the Py are identical, § = 0.

An important property of this entropy that was not mentioned in SEP-13 is
that it 1is extrinsic. Specifically, let P, be the square of a seismogram at

time t=i. Let seismogram number 1 have length N energy u, = Z Py and

1
i
s1 = 3 p1 1n pi. Likewise 1let seismogram number 2 have N2’ uz, and sz. By
i

equation (2.7) the separate and combined seismogram entropies are

1;

!ul‘«

S1 = s1 - u1 n N
- 14

!’u ~

2

32 = 52 - u2 n W;

u +u2
St1e2y = Sp* sy - (upwun) In e N,
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Now it is easy to show that if the energy per unit length on the first seismo-

gram ul/N1 equals that on the second seismogram UZ/NZ' then

S1 %35, % S(142)

This means that entropy does not change if a homogeneous region 1s divided
into hypothetical bins. It would change only 1f the bins got so small that
the energy per unit length began to fluctuate.

An important practical factor influencing one’s choice of entropy measure
is the behavior of derivatives. Stable derivatives are very helpful in find-
ing descent methods that actually work. The geometric dinequality has the
unfortunate property that aS/apt contains l/pt. Thus a single cell contain-
ing no energy has a drastic effect. If this can happen because of random
fluctuation, then it is hard to descend. The power (or parsimony) inequality
has well-behaved first derivatives, but 1/pt occurs in the second deriva-
tive. For that reason the algorithm in the next essay does not use a second-
derivative method to determine the step length. [Incidentally, in SEP-20, p.
226-227, there should be "double dot" over p in equations {(6¢c). (7c), and
twice in (Bc¢c), but since second-derivative methods are unreliable, we will not

issue an errata but instead look for the bug in our typesetter!]

In conclusion, the "parsimony" approach has by no means been superseded
by the geometric inequality approach. In fact, I should have made reference
to 1t in the SEP-20 paper on separation of binary mixtures. For the future,
these two approaches seem quite different and much remains to be learned about
their properties. Most tantalizing of all is the still unreached goal of suc-

cessful use of the probability entropy in seismogram analysis.

3. The Basic Debubble Algorithm

The basic algorithm for determination of the minimum entropy deconvolu-
tion filter is an interesting combination of well-known techniques for Teast-

squares optimal filters. Define
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yt = observed seismogram

ft = decon filter = dinverse gubb1e

xt = y * f = output deconvolved trace

Y = matrix of shifted columns of Y, such that x = Yf
P, = xi or smoothed version of same or envelope

9, = weights

G = diagonal matrix with g, on diagonal

As a classical least-squares situation, consider a weighted sum of output

powers. It has summation representation and matrix representation.

T, T

st = 3 g X' G6x = £V GYF (3.1)

P
t
+ t

To extremalize S' with respect to variation in the filter, we set to zero

ap
as! L T _ T
-a—F-t- = 3z gt 5~f.—- = 2Y GYf = 2Y Gx (3.2)
N t J
As a second example consider some “entropy function" S(p) such as the
extrinsic power inequality form
N N 1 N
S = X p,Inp, - |2 p,|1n= 2 p (3.3)
t=1 © L S N 't

Define weights 9, as aS/apt. Now to extremalize S with respect +to varia-

tion in the filter, we set to zero

dp op

as as t t T
= = 2 =—_— = 2 g, == = 2Y Gx (3.4)
afj N apt afj ¢t afj

Notice the algebraic equivalence of setting (3.2) to zero with setting (3.4)
to zero. The third example is equivalent to (3.2) and (3.4), but is more
intuitive and computationally oriented. Consider a desire to scale up x, when

t
9, > g and to scale down when g9, < g. This thought can be expressed as

dx, = (g, - g)x, (3.5)
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In terms of the filter x = Yf and dx = Y df we have

Y df = (6 - gl)x (3.6)

A traditional Levinson least-squares approach is to premultiply by YT:

YTY df = YT(G - gl)x (3.7)

These equations may be solved to find a df which may be used to update X.
After many iterations we may achieve convergence. Convergence means that df
comes out zero. And that, except for the constant g, is equal to (3.2) and
(3.4). Let us examine this censtant. Premultiply (3.7) by fT and assume con-

vergence by assuming df = 0.

0 = (fTYT)(Y df) = (fTYT)(G - gl)x (3.8a)
0 = xT dx = xTGx - §(xTx) (3.8b)

T
g = XTGX (3.8¢c)

X X

From (3.8c) we see what the value of g must be in order for our assumption of
convergence to be valid. It turns out that the "intrinsic entropies" always
have g = 0. Next, drop the convergence assumption but choose the value of g
given by (3.8¢c). Inserting it into (3.8b), we see that dx is always perpen-
dicular to x. This means that x preserves 1its length during iteration (to
second order in Ax). So the g acts as a constant energy constraint for the
extrinsic entropies, fixing up the G if need be. So the iterative procedure
implied by (3.7) solves the zeroing of (3.2) and (3.4).

Although (3.7) determines the direction of df its magnitude, containing
no second-derivative information about S, wmay be inappropriate. 1 believe a
reasonable approach is to examine dx = Y df. If there are many sign agree-
ments between the components of the dx of this iteration and those of the

dx  of the last iteration, then |dx| should be increased. In the event of
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a preponderance of sign disagreements, [dx| should be decreased, say by about
half.

Algorithm
Foo= 8(t)
X = y x f
dx = x
« = 1/10 (a=1 wmight be Taster 1f stable)

Begin 1teration

slightly smoothed x2 or its envelope

Py * t

9, = ln(pt) - 1n <<pt>> {(for example)
- T T .

g = X Gx/x x {energy constraint)

6 = (g, - 0)l

Levinson solve for df
(YTyydf = Y'ex
dx = Y df

. Slgnagree (x,x) + 2 signagree {dx,dx )

@ 2 signagree (x,x)
X = X + dx &

f = f + df «

dx = dx

End iteration
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Notice that as convergence occurs, YTGx will be tending toward 2zero,
causing e« dx to vanish regardless of whether or not a 1s vanishing. The real
test of whether convergence is occurring is whether |ja dx||/|[x|] is tending

toward zero.

4. Non-stationarity: Application to a Common-Shot Profile

Reflection seismic data exhibits a severe decay of amplitude and change
of color with time. Likewise there are systematic changes with offset. Is
entropy processing dependent on a stationarity assumption? Is it sensitive to
the familiar forms of non-stationarity? Must we devise ad hoc preprocessing
to transform to stationarity, or can we directly allow for non-stationarity in

our analysis for the entropy processing?

The gradient of the geometric inequality entropy is the inverse (square)
envelope of the filter output plus a constant, g = 1/<Xx> + const. The final
equilibrium condition 1is YTGx = 0 so the inverse envelope in the gradient is
in the long range compensated for by the amplitude of y and the amplitude of
x. In the short range, the envelope of x may be quite different from that
of y, a fact which caused me to use numerous ad hoc stabilizing procedures
during the descent. Also, the constant term, whose apparently modest purpose
is to maintain normalization, 1is no longer gain-invariant when the YTx is
included. Realistically, we must conclude that in neither theory nor practice
can entropy processing be regarded as gain-independent. But what about sensi-
tivity? Some quite good, as well as some quite poor, results have come out of

experimental work where stationarity was largely ignored.

The gradient of extrinsic entropy defined by the parsimony inequality for

a 2-D problem, say time t =1,2,...,N and channel j = 1,2.....NJ. is

t

1
9yp = Py - g IR, (4.1)
ittgj

If you suspected some variation in power from channel to channel you might

prefer to define a different gradient for each channel, say

(4.2)

gjt = 1n pjt - 1n N 2p.
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Of course if 2 pjt really were independent of J then (4.2) would be alge-
t

braically equal to (4.1). In practice they will always differ, the advantage
lying with (4.1) when they differ because of sample variance and the advantage
1ying with (4.2) when they differ because of systematic differences between
channels. But would there be a practical difference between (4.1) and (4.2)?
The practical difference clearly seen in the experimental work is that, if
there is a systematic color difference between two channels, then the minimum
entropy criterion will tend to choose filter color to amplify one channel and
attenuate the other. This is clearly unacceptable. Wiggins told me that he
preceded his entropy processing by conventional decon {(which has the effect of
balancing color). I was able to get away with ignoring this preprocess, but
do not believe a successful production program can ignore it. So some kind of
spectral balancing is necessary. But if we are admitting to systematic coler
and power variations from channel to channel we should surely admit to time
variations within a channel. How does the ME filter choose its color?
Perhaps the real vrote of the minimum entropy filter is to try to produce an
output whose amplitude as a function of time is not correlated with its fre-
quency as a function of time. Only the limited number of degrees of freedom
prevent the final frequency from being completely uncorrelated with the ampli-
tude.

Filter equations are invariant under simultaneous exponential scaling of
data and filters. So we can always do a crude uniformization of power down
the trace in this way, and we should always preprocess with such an exponen-
tial tilt. Gain distortion can be defined as geometric spreading and absorp-
tion correction, or automatic gain control. Gain distortion does seem to be a
necessary part of transformation to stationarity. And transformation to sta-
tionarity seems to be relevant not only to estimating the debubble filter, but
also to the estimation of the spectral balancing filters. At this point the
reader may begin to fear that our data analysis is degenerating from scien-
tific analysis to an ad hoc, mushy, subjective, practitioner’s art. Salvation
comes from the fact that we need only apply gain distortion to filter outputs.
We need not apply it to filter 1nputs and therefore need not falsify our basic
data or filter equations. We can obtain all the statistics we need from the
gain-distorted filter outputs. Only at early stages in the iterative descent

are statistics based on distorted raw data.
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Let us assume that spectral balancing can be done before (hence in isola-
tion from) debubble. Our first estimated balancing filters are just delta
functions which means our first estimated balanced outputs are the raw data.
Then we perform gain distortion on these outputs and find filter perturbations
which will tend to balance the outputs. Apply the perturbed fiiters to the
inputs and repeat. Rather than describe the spectral balancing in further
detail (since iteration on it may be unimportant) let us go on to show the

details of the debubble filter estimation procedure.

Recalling that x, is the output of the debubble filter, we begin by stat-

t
ing our desire, namely something 1like

dx gain-corrected local envelope of X

it . t
USSR 24 ]n - (4.3)
Xy regional average of numerator

To get more specific, we will need some definitions. Let

1/t2 = expected power in field trace, neglecting Q
1/t = expected power in slant stack, neglecting Q
2
xt = square of trace
XX = envelope of trace or smoothed local sum of squares
XX = locally smoothed envelope (say 10 ms = half-wavelength)
<<xx>> = regionally smoother power (1 sec or so, longer than bubble)
xTx = 1inner product, global sum of power

Now define a positive variable u which may be a fairly uniform function of

t
time

- t
Uy = XX Txxtsy (4.4)

As the denominator smoothing becomes very heavy then u becomes the envelope
of the filtered seismogram corrected for spherical divergence. As the smooth-
ing becomes very light then u becomes the envelope aitered by "hard AGC."

The sum of u over time may be expressed in matrix formalism as

Zu = x Dx = fT YT DYF (4.5)
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where D is diagonal matrix containing the scale factor of (4.4) which con-

verts xx to u. Likewise,

Z2u = Y DYTFf = Y Dx {(4.6)

N[n—a
g

We want to push u away from uniformity by maximizing, say,

Zulnu 1
S - —_E—G——- 1n N—zu (4,7)
as
3; = In uy - const(t) (4.8)

Let G be a diagonal matrix with In u, on the diagonal. To maximize S

with respect to variation of the filter f we set to zero

G

u
as as t T =
0 aF - f'a_u_t-é-f-‘— = Y D(G6 - gl)x . (4.9)

To achieve this result iteratively we start with (4.3) and substitute dx = Y
df. Then using least squares, premultiply by YTD. Thus

(Y' DY) df v'o(e - §D)x (4.10)

As before, convergence will require g xTDGx/xTDx, and we will find xTDx con-

stant during diteration because xTD dx = 0. Iteratively solving this one may
eventually find convergence, df = 0, when the right side, equaling (4.9), van-
ishes. The matrix (YTDY) does not turn out to be Toeplitz. For computational
convenience it could be approximated by a Toeplitz matrix made Ffrom gain-
scaling the inputs y. Convergence implies the vanishing of the right-hand
side no matter what (positive-definite) matrix lies on the left. So error of

approximation on the left would be iterated away.

An economical, single-pass, approximate ME debubble filter can be
achieved as follows. Take f +to be a delta function, thus defining x, the
gradient G, and the gain control D all from the process 1nputs y. Then
solve (4.10) for df and quit with the filter f + df. In this case it might



170

be hazardous to approximate YTDY as Toeplitz. But the effort 1in computing
YTDY involves both time sums and channel sums, so unless the filter f s
extremely long, a conventional matrix 1n§ers10n may not be costly compared to
other costs. Also, weighted Levinson-type systems were considered in SEP-11,
p. 167.

As a final item, let us incorporate the subjective opinion that informa-
tion 1is not wuniformly distributed down the time-axis of a seismogram. Both
bandwidth and signhal-to-noise ratiao clearly diminish with time. I will sug-
gest the subjective weighting factor w = exp(-t/3) as a conversion from the
uniform variable u to the a priori information density. A sketch of the

effect of this upon the main equations is

Zwulnu

S SRR InZwu
s
3 - wt(ln u, o+ const)
L L
W2Y dfF % W% 1n(u) x
(Y'wDY) df = Y'WD(G - gI)x

In conclustion, the theory of minimum entropy in the face of non-
stationarity has advanced considerably since our last trials. It 1s now
worthwhile to put together a production program to try to uncover any remain-

ing misconceptions.

5. Seismogram Inversion

Seismogram inversion is the name generally given to the process of strip-
ping a reflection seismogram of all its multiple reflections. The purpose is
to enable comparison with well logs to allow extrapolation of geological con-
ditions away from the well hole. Inversion of seismograms has not become a
routine process such as filtering, deconvolution {spectral balancing), stack-

ing, velocity analysis, or migration. It 1is not that the object is not
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universally desired but that the process is as likely to destroy good data as
to improve it. Anyway, the importance of the goal is evidenced by a continued
popularity of effort, despite an erratic record of achievement. After my pub-
lications in this a4area 1in 1964 and 1968 I abandoned 1it, believing lateral
variation (migration) to be more important in the analysis of field data. By
1973 there were a 1ot of deep water seismic data available that exhibited
numerous obvious multiple reflections. To even the casual observer, it was
apparent that the multiples were not being removed by efforts to predict them.
Subtracting them out was not working nearly as well as stacking them out.
This means that either multiples are incoherent, or we have bad predictive
models. Undaunted, some doing inversion work have stressed the proper wmodel-
ing of transmission coefficients and inner~bed multiples. Theoretically, such
effects are second order small. Unfortunately, an objective test of the vali-

dity of such work is not as readily available as with seaflioor multiples.

Pursuing my belief in the importance of lateral variation, Don C. Riley
and I developed a theory for the incorporation of migration effects with mul-
tiples. Because of the need for vertical stacks the method turned out to be
much more sensitive to the zero~offset data than to the further offsets. This
disadvantage was largely overcome by later work on Snell stacks done with Raul
Estevez. Much to my disappointment the process still did not Tead to routine
industrial application, despite additional development at Digicon, CGG, and

elsewhere.

Present thoughts are that there is a remaining excess sensitivity to
accurate knowledge of the seafloor reflection and the shot waveform. The dif-
ficulty is most severe in shallow water where high-order multiples are gen-
erated by repeated reflection from the seafloor. Thus & timing error of At
on the seafloor becomes nAt on the n-th order wultiple. Further, the
seafloor must be convolved on itself n times to generate the multiple. If
the original event lies between two samples on the time axis, it means that
the interpolation operator must be convolved on itself that many times. This
leads to considerable pulse broadening and dispersion. Even though a depth
gauge gives a very accurate measure to the seafloor, the effective seismic
depth and reflection strength will differ due to differing frequency content
and the degree of consolidation of 1local sediments. Compounding all the

above, the seafloor seismic reflection is often not recorded at those angles
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for which its multiples are a problem. Thus some process is needed to feed
back information from high-order multiples to improve the quality of the
seafloor reflection estimate. The who]é issue is also associated with uncer-
tainty in the source waveform. Given a successful method, it could add to the
range of applicability of Riley and Estevez methods by enabling them to cope
with that vast bulk of shallower water data where the cable "lead-in" cuts off

the seafloor reflection for all angles of interest.

Using minimum entropy concepts we can hope to provide improved seafloor
and shot-waveform estimates. The fact that minimum entropy has widely outdis-
tanced least squares in shot-waveform estimation gives grounds for some opti-
mism. Even more optimism is warranted by the fact that we seek not a whole,
big, unknown waveform, but a small number of coefficients in the vicinity of

the seafloor.

To see how this might be done, assume that a preliminary minimum entropy
source wavelet has been deconvolved, but the t=0 position and the amplitude
are still uncertain. For these we allocate a filter with about five adju-
stable coefficients. Likewise, we will use about a five-point operator to
define the seafloor location. Take U and D to be wup- and dowhgoing,
spherical (or cylindrical) divergence corrected waves. For such a 1-D model,
the reflection coefficient series € 1is given (to the "Noah" approximation)
by the Z-transform ratio C = U/D. The free-surface reflection causes the
downgoing wave D to be a superposition of the (residual) source S plus the
negative of the upcoming wave U, so D =S - U. Let the inverse of § be
the five-parameter filter F. Rearranging we see special mathematical justif-
ication for the term inversion:

D+ U S 1 1

o T b TTus C Tour (5-1)

u
1+C = 1+ T -

By this definition the quantity 1+C s broad-band. It may be risky to apply
a minimum entropy criterion to 1t unless it is first brought to a reasonable
color. Suppose that a reasonable power spectrum is that of U. Let A be a
minimum phase inverse (or symmetric) wavelet such that AA = 1/{(UU). Let us
apply an entropy condition to X where

1+ C 1

X = A AL - UF) (5.2)
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‘The variation is

8X = —————-I—-—-E-(UBF + F BU)
A(1 - UF)
2
= X"A(U 8§F + F 8U) (5.3)

The data is the upcoming wave U and by 8U we mean the variation that we
intend to apply to the five coefficients in the digitized seismogram (slant
stack or radial trace) nearest the seafloor. You can see that the color com-
pensation filter A could be absorbed into 8F and 8U and had we not done so
explicitly, 1t probably would have been there implicitly by the end of the
iteration, so its precise choice should not be critical. The quantity X2 is
the convolution upon itself of our best reflection coefficient model. A
"shifted column" matrix of XZAU will be called Yl' Likewise, a shifted
column matrix of XZAF will be called Yz. With all this, (5.3) may be con-

verted from Z-transform notation to matrix notation

3X = Y1 3F + Y2 su (5.4)

In (5.4) 8F and 8U are five component vectors and 8§x has the length of a
seismogram. Next we could haul out the machinery of multiple time-series
analysis, but since we must proceed iteratively anyway, it is easier to let 8F
and &8U be zero on alternate iterations. Setting, for example, 8U equal to

zero, and choosing a G from some entropy method, we get

§x = Gx (5.5)

Yl §F % 8x = Gx (5.6)
T T .

(YlYl) §F = YlGx (5.7)

so we are now on the well-worn minimum entropy track. A difference 1is that
after finding &8F or 8U we need to do the division (5.2). This calls for a
11ttle care if 8F or &U gets too large. The sensitivity to error should
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not be too great, however, because the coefficients of U are chosen zero
before the seafloor, thereby 1imiting the growth of errors to the number of

seafloor bounces.

Suppose the above process is successful. We are then in a position to
incorporate transmission coefficients and inner bed multiples. This would not
introduce any new degrees of freedom, it would only complicate the calculation
of x and Y. Then we can find out whether inclusion of these physical fac-
tors leads to a consistent drop in entropy. This will be the first objective
test of the Noah assumptions. Likewise it is an objective test of whether
there is any utility in exploration of the theoretical phenomena of one-
dimensional transmission coefficients and of inner bed multiples. That there
can be any doubt about these arises from serious consideration of the nature
of seismic reflection from real depositional sequences with real heterogeneity
in all directions and knowledge that P-$ conversions must occur in non-zero

of fset data.

6. ME Extrapolation and Power Spectrum

A classical problem in time-series analysis is the extrapolation of a
finite segment of data off both its ends. Along with this question goes the
much easier question (once the extrapolation has been done) of the determina-
tion of the energy spectrum of the extrapolated segment. In speaking of his
famous maximum-entropy solution to this problem, John Burg once remarked that
the reason for the high-resolution character of the method was widely misun-
derstood. The real reason for the great success of the method is that it s
completely faithful to the observations, unlike windowing methods which effec-
tively falsify the observations. That "entropy" (defined by the geometric
inequality, see FGDP, p. 122) was maximized rather than maximizing almost any-
thing else was a computational convenience, but, contrary to widespread opin-

ion, was of no real significance.

To illustrate the validity of Burg’s remarks I will show how we can get
an excellent solution to the same problem by minimizing entropy instead of
maximizing it. To ensure that the problem remains well posed, some apparently
minor aspects of the problem formulation will be modified. In Burg’'s method,

he fits a prediction filter of finite degree. The degree 1is necessarily
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limited by the length of the data samplie. 1In practice, the filter length is
chosen by some poorly understood trade—off between resolution and sample vari-
ance. The implication of the Finitenes§ of the degree is that the prediction
of f the end of the data sample goes asymptotically to =zero. It does not
become identically =zero beyond some particular, finite distance. In the
present problem formulation we will not use a prediction filter. Instead (on
the basis of some vague resolution trade-off) we will choose a distance off
the end of the data sampie beyond which the extrapolation values all vanish.
If we choose this distance to be too great, then we may expect to see
sinusoidal continuation of the dominant fregquency component of the data sam-
ple. If we choose the distance too small then we may expect to see the usual
spectral broadening (smoothing) due to truncation. The appropriate distance
for non-zero extrapolation values is deliberately left as a choice which lies
outside the framework of the present theory. Which definition of entropy to
minimize is also a matter for subjective choice. I, however, am biased in

favor of a uniformly weighted, weak inequality. Maximize, say,

= —_— - In

]
Simp11c1t z P, (6.1)

—
n 4=
o

where P, is the power spectrum at the i-th frequency and N 1is as large as
is computationally practical. The direction gj in which to try to move

against the constraints is

g, = 1Inp, - > z (6.2)

In words this says that where the log spectrum exceeds its average value we
will try to boost the spectrum. Where it is less than the mean we will try te

diminish it. Define

x
u

Column vector denoting the data sample.

{x ,x.xr) Data sample extended both to left and right.
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(U,XQ.X.xr.D)

[AQ BQ C Br Ar]

Data sample on time domain of approxi-
mately infinite duration. Length of zero
padding 1imited only by economics of <cal-
culation. h

Fourier transform of above (column vector).

Square matrix of Fourier transformation
partitioned as data is partitioned.

Diagonal matrix with gj on diagonal.

With these definitions the extended data sample x and its perturbation dx

have the Fourier transformation f + df where

0 F 0
xQ de
[AQ BQ C Br AR] <ix + 0 |y = f + df
X dx
r
0 [ 0 ]

Our basic desire is to change the complex Fourier transform f

so that

From (6.3) this may be written

or symbolically as

Think about the matrix

transform matrix.

(6.3)

in magnitude

df ~ G f (6.4)
dxQ
[BQ Br] dxr = df ~ G F (6.5a)
Bdx ~ GF (6.5b)
BT. It contains rows from the inverse Fourier

Because of mutual orthogonality we

have B'B = I.
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Premultiply (86.5b) by BT to give a "least-squares" solution:

dx = B G f (6.86)

These perturbations dx9v and dxr can be added into Xy and X, and the pro-
cess can be iterated. Unfortunately, there is really nothing to be said about
the uniqueness or certainty of convergence. The reputation of the method will
have to be based on the subjective quality of the results for various exam-
ples. A favorable test case should be the sinc function. Can this method
successfully extend the side lobes? I belijeve it will do so far more satis-
factorily than Burg’s method because of the fact that the sinc function has a
box-car spectrum. Such a spectrum causes trouble for predictive methods but
is ideal in this case. Another favorable test case would seem to be the sum

of a few sinusoids.

Unfortunately there seems also to be no clever shortcut to the solution
and the iteration might turn out to be a tedious one. At this stage I take
the view that computers become cheaper every year while the cost of data col-
lection rises. In more and more situations we are more concerned with the
quality of results than with the underlying computer time used. Therefore,
the computer algorithm which I will propose uses only the crudest estimate of
the scale factor to be applied to the dx of equation (6.6). The basic idea
is that if the dx of one iteration has many sign agreements with that of the
previous iterations, say dx , then the step size is probably too small and it
should be increased. Contrariwise, if dx has many sign disagreements with
dx  then the step size is probably too large and should be decreased. If the
solutions turn out to be of exceptional subjective quality and economic util-
ity we can always return to the task of finding a more clever descent pro-

cedure. The algorithm then is this:

Declare real a,x{N).dx(N),dx (N),u{N),g{(N)

complex f{N)
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Initialize

x
1

dx

13

Beginning

dx =

dx =

NC =

Reiterate.

Convergence is occurring if some norm of e« dx

with the

(0,0,x,0,0) Pad data with zeros.
1 Initialization.
arbitrary Initialization.

of iteration loop

FT(x)

ff

Tnu-(2uln u)/(Zu)

FT1(gf)

(O,de.O,dxr,O)

signagree [(dxr.dxg),(dxr.dxk)]

3 -
5TNC signagree(dx,dx )]

X + a dx

dx

norm of Xx.

Fourier-transform

extended data.
Form spectrum.
Form gradient weight.

Inverse-transform

weighted transform.

Mask forbidden perturba-
tions. (Now

B1GF.)

we have

Count free parameters.

Increase or decrease
scale by as much as a
factor of two.

Update X4 and X

Save o0ld direction.

in diminishing 1in comparison

After convergence is achieved, the values being masked
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of f by the perturbations are of interest because they point to significant (or

suspicious) data values.

The above problem, as posed, does not seem to have any very direct appli-
cation to exploration geophysics. Nonetheless, if simple +trials give
encouraging results, there is a rather straightforward extension to what may
be the most important problem in geophysical data analysis. That is, how
should we extrapolate and interpolate spatially aliased data? It 1is known
that human beings can do this with modest success, but I know of no satisfac-
tory systematic approach to the problem. Clearly the question of spatially
extending and interpolating a common-midpoint gather lies within this realm.
To apply the present techniques, just consider the spectrum to be two-

dimensionatl.

To shrink such a towering problem to manageable size, we might try the
easier problem which results from a Fourier-transformed time axis. Now for
each temporal frequency we have a (usually 48-point) function of space. The
function wmay require extrapoliation (as already described) and interpolation.
The interpolation may be achieved by redefining the constraint mask to be a
comb function (rather than zeros) over the geophone cable. Another applica-

tion is the interpolation of data between parallel survey lines.

Satisfactory solutions to these practical problems will no doubt lead to
better fundamental knowledge of properties of convexity inequalities and what
makes some of them better than others. Also, better understanding of what
constitutes a good answer may lead to better understanding of how we may con-
verge more quickly, that is, how to quantify what it is we don’t know and

hence how to learn faster.

7. Convex Inequalities and Statistical Mechanics

A familiar inequality in science and engineering is the one which says
that the mean of the squares exceeds the square of the mean, namely, the qua-

dratic form Q is positive where

xi] 2 0 (7.1)
1
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A slight generalization is a weighted sum where v, are positive weights sum-

ming to unity, that is, given

v, 20 and 2 L 1, then (7.2)

2 2
0 = Zwx - [z w_ixi] > 0 (7.3)
This quadratic inequality is the simplest example of a whole family of ine-
qualities. Any function f{x) 1is said to be concave if dzf/dx2 2 0 and com-
vex if d2f/dx2 < 0. For a concave function f and any weighted mean we can

anticipate that
mean[f(x1)] b f[mean(xi)] (7.4)

Equation (7.1) is the special case f(x) = x2. Figure 7.1 illustrates the idea

for a weighted mean of two numbers. The general proof of (4) is by induction

successively including more numbers into the mean.

More interesting examples come from functions f whose second derivative
changes sign at the origin. For such functions we still have convexity-type
inequalities if we replace the arbitrary real numbers X by arbitrary posi-
tive numbers r. z 0. A classic case 1is the harmonic 1inequality where
f(r) = 1/r, £f'(r) = 1/r3, ]

Yy 1
H=Er-m20 {7.5)
i i
A more important case 1is the geometric inequality. Here f{r) = 1n(r),
f''(r) = -1/r2
G = 1In 2 wiry - z W, 1n ry > 0 (7.6a)

A somewhat more familiar form of the geometric inequality is found if we

exponentiate both terms and choose weights L 1/N.
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X
/
\
1 2
3 A+§B
FIG. 7.1. Illustration that ~ AZ + 282 3 [—I—A . 2 5]2
3 3 3 3
N N
1 /N
v 2oryx Lo (7.6b)

A most important inequality in information theory and thermodynamics is the

one based upon f(r) = r1+G where e tends to zero. I like to call this the

weak inequality. A little bit of catculation enables us to go to the limit.

l+e l+e
s wors 2 ES w1r1]
Take logarithms

l+¢
in 2 Ww.rs 2 (l+e) 1n(2 wiri)

Expand both sides in a Taylor series.
both sides. Use

Note that the leading term cancels on



182

du
dx

d U u
™ a = 1n{a) a

Divide both sides by € and go to the 1imit e€=0 getting

We can now define a positive variable S' with or without a positive scaling

factor 2 wr:

] . T 1 _
intrinsic 2 w.r, InZwr, 20 (7.7a)

t
™
€
=

! -
Sextrins1c In r1 (2 w1r1) n(2 w1r1) 2z 0 (7.7b)

These S' variables seem to relate to the negative of entropy in some (but
not all) applications.

Recapitulating, we have defined positive statistics (Q,S$',G,H) of a
population rs by using a convexity function f which is r to the power
(2,1+e,e,-1), where € tends to zero, namely (2,1,0,-1). Non-integral powers

and other functions are also possible.

There are many curiocus properties of these statistics Q, S', G and H.
Notice that they all vanish if the rs are all equal to one another. Suppose
an entire population ri may be modified in some way by adjustment of some
single scalar parameter X. Then we can say that choosing X +to minimize
Q, $', Gor H is choosing X to drive the rs toward uniformity, homo-
geneity, or equilibrium. Likewise we may drive the rs away from one another
by adjusting X so that any of Q, S', G or H 1is maximized. Let us call the
r1 microscopic variables. Let Q, S', G, H be called macroscopic-dependent
variables and X a macroscopic-independent variable. Let us now more com-
pletely define the macroscopic-independent variable X by asserting that a

change in X affects each and every rs in the same way, namely such that

—_— = 1 (7.8)
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Now let us see that the change of S' .. with X gives the geometric ine-
extrinsic
quality
[} - -
Sext = ; W n ry {% w1r1] n ? wiri] (7.9)
i i i
\
1
gé—- = w,[]n r. - 1n{2 w r.} (7.10)
r. J J R B
J 1 J
or
as' as! i .
- ? oo~ ¢ <! (7.11)

Next we see that the second derivative gives the harmonic inequalityl

s ea
8X2 ax P

wJ 1
= Z =TT wr ° H =2 0 (7.12)

Let us now consider the physical application of the randomization of
radiation trapped in a voilume. At equilibrium we might imagine that the
energy is more or less uniformly distributed throughout the volume. Imagine
1036 variables to describe this radiation and 1036-1 constraining equations
of motion. Now by selecting some dependent scalar macroscopic variable to
minimize, such as Q, $', G, or H, we will be reducing the infinitude of solu-
tions (actually only 1036 are mutually orthogonal) to a single soclution. All
of the macroscopic variables vanish if the energy distribution becomes com-
pletely homogeneous. However, the constraint equations may prevent complete
homogeneity from being attained, say perhaps because of zero crossings of the
wavelets, etc. Therefore 1t is a tricky business, subject to much theoretical
and experimental analysis to decide what macroscopic variable to minimize.
For definiteness let us try the assumption that we wish to minimize the weak

inequality. Let us define
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n MM4=
<

v1/V

u,/v,
/1

u1/V
u/v

Inserting into (7.7b) we have

We define our macroscopic-independent variable

the total energy

u

1
extrinsic

X

Total volume is sum
of volume of N
cells.

Total energy is sum
of energy of each
cell.

Weights are in pro-
portion to cell
size. Weights sum
to unity even if
volume v is
varied.

Energy per unit
volume tends to
homogeneity at
equilibrium.

Entropy § taken to
be the negative of
volume times the
weak inequality.

i

1

as U so that a chan

is shared by each cell in proportion to its volume.

Multiplying (7.14) by (7.15) and summing, we get

(7.13)

(7.14)

ge 1in

So

(7.15)
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as as
AS = f-a—a—.i-du_i = @GAU or 3 ° G (7.16)

It 1s also easy to see that (625)/(8U2) = -H. Likewise we define another
macroscopic-independent variable as volume v so that a change in totatl

volume V s shared by each cell in proportion to its volume. So

Yy
dv1 = v av (7.17)
ov
0s oS i
W - Ea’-i--a—\-,—— = 0 (7.18)

Now let us copy some basic equations out of a standard thermodynamics book.
These define temperature T, pressure P, and specific heat at constant volume

Cc :
v

as 1
aj-]v = 7 {7.19)
9s P
5,\7]“ - £ (7.20)
85)2
¢, = - ag > 0 (7.21)
as
au?

Inspection of (7.16) and (7.19) shows that high temperature is associated
with G =» 0 and the u1/v1 being very uniformly distributed. Likewise, low
temperature is associated with G >> 0 as would happen as one of the u,
tends to zero. Vanishing of (7.18), hence {(7.20), means the entropy function
we have chosen implies that pressure P vanishes, a reasonable enough 1idea
since we are dealing with radiation. The positivity of specific heat in
(7.21) is ensured by the harmonic inequality H 2 0. The Nernst concept that
specific heat vanishes at zero temperature is readily verified by letting one

of the ry tend to zero and seeing that c. = (1n r1)2/(1/r1) tends to zero.
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Interesting as all this is, it does not prove that our original choice of
entropy was correct, just that it does not seem to lead to any contradictions.
An experimental procedure for determinatfﬁn of entropy is the integration of
specific heat (see for example Callen, p. 326). A satisfactory mathematical
basis for the field of thermodynamics seems to be available by combining the

ideas found in the following two references:
(1) Callen, H. B., 1960, Thermodynamics: John Wiley & Sons, Inc.

(2) Weinhold, F., Metric geometry of equilibrium thermodynamics, J. Chemical
Physics, v. 63, no. 6, p. 2479-2501.

But the subject at hand seems to be not so much thermodynamics as it is
irreversible statistical mechanics. 1 have been unable to discover a suitable
reference for the mathematical superstructure of this field. But we seem to

be off tov a good start already and I would like to point to a few interesting

operators and ideas.

A collection of interesting macroscopic-independent variables is given by

3] 3]

w - 25'.—- (7.22a)
J J

3] 0

3wy - z_r:jé—r‘—— (7.22b)
3 J

3 5 "il| 8

az - EIF Y [2_ "‘” v, (7.22¢)
L3 i i N

0 [ 3]

W - ? -wjrj - WJEE wiri]] 5;;- (7.22d)

Notice that the Z and W variables change the weights, but they do it 1in

such a way that 2 v, is preserved equal to the constant 1.

One of the most interesting ideas {is that of exact differential. It s
disappointing to discover, for example, that for none of the above operators

do we find the familiar thermodynamic expression
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a os 9 os
30 3V - BV 83U (7.23)

There are two reasons for this. The mathematical reason is that

ar or . or ar
SUER TR AP T _—

K X ark i ay arj K ay ark K ox ar:j

And a physical reason is that entropy S can be an exact differential only in
reversible thermodynamics, i.e. at equilibrium, and we have included no
mathematical statement that we are describing equilibrium. The tantalizing
prospect 1is that internal energy U should be an exact differential even in
the non-equilibrium situation. Consider two volumes adjacent but isolated
from one another. If they are suddenly interconnected by a physical or ther-
mal leak, there would be a change of entropy but there would not be a change
of internal energy. So, it seems that we should be able to find macroscopic-

independent variables 1ike those of (7.22a,b,c,d) such that
(3] ou 3 au
5y &s © s wh (7.25)

but I have been unable to find them.



