INVERSION OF SEISMIC DATA IN A LATERALLY HETEROGENEOUS
MEDIUM

Robert H. Stolt and Bert Jacobs

It would be n'ice1 to have an algorithm for full inversion of seismic
data, multiples and all, which does not depend on starting with a "good" esti-
mate of elastic (acoustic) parameters. The Gelfand-Levitan method offers a
sort of mindless 1inversion scheme for layered media, and if it could be
applied to the general seismic problem I feel it would be worth doing. Unfor-
tunately, this method seems to require a "potential" which is diagonal in at
least one direction and, further, which is independent of freguency. While
the wave equation 1is easily modified to meet one requirement or the other, 1t
does not appear possibie 1in general to meet both. Therefore we reluctantly
conclude that the Gelfand-Levitan inverse method is not, at least in its pris-

tine form, applicable to the general inverse seismic problem.

This does not mean, however, that there is no solution to the inverse
seismic problem; it just means that we must use another method.2 We develop
below an 1inversion scheme directly applicable to the acoustic wave equation
and general enough, we hope, to be easily extendable to the elastic wave equa-

tion.

1a question to keep in mind while reading this article is how much would a
magic inversion process be worth, measured in units of increased computer and
data acquisition costs. If the answer isn’t ‘“plenty," the reader can stop
here.

2Lest the reader think this is a new idea, it is not. Jost and Kohn (Sep-
tember 1952, Phys. Rev., vol. 87, no. 6, p. 377) predate Gelfand-Levitan. Ra-
zavy (November 1375, J. Acoust. Soc. Am., vol. 58, no. 5, p. 956) develops an
iterative dinverse for the 1-D constant density case. Weglein, Boyse and
Anderson (submitted to Geophysics, 1979) present the 3-D constant density in-
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We begin with the scalar wave equation

1 wz
V-;V+-—-w = 0 (la)
Comparing it with the constant parameter equation

pO o

2
[—lv2+§-l-] v, = 0 (1b)

gives us a non-local, frequency-dependent potential operator

Vie.x) = o al((")+v-b(")v (2)
0 ’0
where
K P
a = —2-1 and b=-—2-1,
K »

the same as Clayton has used for the simple Born approximation.

The inverse problem, in which one attempts to find V from a limited set
of data, would be hopeless if V were an arbitrary operator. V 1is hardly
arbitrary, however. It has almost as much structure (half as much, to be pre-
cise) as a Schroedinger potential. and there is no reason to suppose that
given a reasonable amount of data we can’'t solve for it. In fact we know it

can be solved to first (Born) approximation.

We will attempt a solution for V of the Lippmann-Schwinger eguation

6 = G_+G6VE = G+ GVG (3)
0 o o 0

where G0 is the known Green's function for the unperturbed wave operator (1lb)

verse problem as a system of coupled integral equations which are not unlike
those deveioped in this paper. Indeed, this paper could be viewed as an ex-
tension of the work of Weglein, et al.



and G 1s the Green’s function for the variable wave operator (la),
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unknown

in general but measured for sources and receivers on the earth®s surface.

It 1s convenient to bring from the quantum scattering closet the scatter-

ihg operator T, defined by3

T(w) = V + VGV

It will be seen shortly that T 1s actually the measured quantity

(4)

{partly

measured, anyway) 1in the seismic experiment. Postmultiplying (4) by G0 and

applying (3) yields the relation

vée = TG
which may be used to modify the Lippmann-Schwinger equation to
G = Go + GOTG0
and to turn (4) 1into a Lippmann-Schwinger equation for T:

T = V+T6V
o

Equations (6) and (7) will form the nucleus of our inversion scheme.

We take our measured data field to be

D(w,xrlxs) = (xr,zr=DI(G-GD)|xs,zs=0>

or equivalently, if we Fourier transform xr+pr and xsaps.

U(w.prlps) = <p..0l(6 - 6 )Ip .0>

3For a very lucid description of the T operator, see Taylor, 1972,
ing Theory: Wiley, p. 134.

(5)

(6)

(7)

Scatter-
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At this point we substitute for G - Go the exact expression (6), giving

D(w.prlps) = <pr'°'GuTGo'ps'°> (8)

Equation (8) can be put 1n the form of an integral equation by inserting com-

plete sets of states between Ga and T and between T and the second Go:
— - -h —l. - L 2 -D' -D.
B(w.prlps) = J dx Jix <pr.0|60|x><x|T|x ><x IGolps‘°> (9)

making use of the explicit forms for GO:

] ¥
1 1p0 1(psx + qsz )

-
x'|G |p_,0> = T
o'"s (2n) % 295

-
<pr,u]GOIx> = ol yadl {z > o)
(2%)* .
with
L
£ A 2
I R
4 = 7 " Pg
v
[ © J
1/
4 A 2
2
W 2
qr - 2 pr (10)
v
o
rK 2
]
V0 = ;—-
Lo

- -+
Equation (3) becomes (since <x|T[x'> = o if 2z oar z' ¢ 0)

B "E v o CHpx-az) o ilpx! +oq.z')
- — ' ]
D(w,prlps) = B'qsqr Jdx Jdx' e K|TIx'> e
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The integrals in this equation are obviously just Fourier transforms, and we

can write

~Zn 2
U(w.prlps) Ta,9. Py <=0 |T(w)lp . a> (11)

A1l that math has boiled down to a simple statement: the measured seismic
field 1s just the T matrix. More precisely, 1t 1s the "on shell" T matrix,

since, according to equation (10), P, and q, (and Pe and qs), for a given w,

are confined to the spherical shell pf + qf = uzlvs. [Also,
2 2 2
Py + 4, = w/vo].

If T were known everywhere, the inverse problem would be solved (in
principle, anyway), since according to equation (8), if we know T we can com-
pute G, and if we know G we can compute the real wave operator, potential
and all. We don’t know T everywhere, so if T were an arbitrary aperator we
would be sunk. But equation (7) gives T a structure which with 1luck will,
together with equation (11), define it uniquely. Substituting (7) inte (11)

we obtain

-ZrP2

ﬁ(w,pr,ps) = <pr.-qu(1 + TGU)VIps,qs> (12)

4qu|"

Equation (12) could be discretized into a set of matrix egquations. The number
of equations would be Nw X Npr b Nps. Since the number of unknown T wvalues
would be Npr X NpS X qu X Nqs. and the number of V1 and V2 values together
would be 2 x Np x Ng, 1dit’s pretty clear there is not enough information in
{12) ta directly determine T and V. However, given T, there are more than
enough equations 1in (12) to find V. This suggests the following iterative

scheme.

From a first estimate of T, we use (12) to determine a first estimate
of v (if the first estimate of T is zero, the first estimate of V
amounts to the Born approximation). We will then use equation (7) [which is
just the off-shell extension of (12)] to form a new estimate of T. The new
estimate of T is returned to (12) to obtain a new estimate of V and so on.

We continue cycling through (12) and (7) until we converge to an acceptable
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solution or our computer dies of old age.

It 1s possible to imagine more than ene iterative scheme which cycles
through (12) and (7) as described above. The details of a couple of the more

straightforward are as follows.

Scheme 1

Imagine a sequence of estimates {(T1'V1)'(Tz'vz)""} which hapefully

will converge to the desired result (T, V). T. will be set to zero. Given

1
Tm‘ Vm will be found by inverting the equation
N -21P2
D(w,prlps) = Taa <pr.-qu(1 + Tmﬁu)vmlps.qs> (13)
Given V , T can be found from
m m+ 1
P8 Ty, Ieea> = <p-q [(1+ TGV lp.a> (14)

P, and q, may be left "on shell" in equation (14), since only their oan-shell

values will be needed in (13). However, the right-hand variables p and q
must be allowed "off shell."

To actually compute equations (13) and (14), we would expand them out as
integral equations. For example, we may put a complete set of states just

ahead of Vm in (14) to obtain
- - i 1 - 1 1
<P quTm . 1|p,q> S [ dp'ldg <p_. qu(l + TmGo)Ip , g Dk
] 1
*<phoatlv lp,a>

We may make use of the fact that [p'.q'> is an eigenvector of Go

] 3 - 1 ]
G, lp'.a"> = 3 [p'.q'>
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‘ to write

- = i ] ’ _ ] 1 -
Poca T leea> S J dp'dg B(pr p )S(qr +q')
<p L-q 1T |p'.q'> 1
T * @atlv i, (15)
£y e - p'2 -qf
L2
]

From equation {(2) for V we have as a form for the V matrix

1 2 am(p|_p’q'-q)
1 1 - —— -
<p » G 'leplQ> - 2'._ @ Ko

b (p'-p,q'-q)
- {pp'+aq') (15a)

o

where a and b are the Fourier transforms of the potential components a(;)
and b(X).

We can express the T-matrix elements in the functional form

2 2
V i
P2l - LT (@ ipt.g> = T (w.p_lp'.q') (15b)
r v2 02 m m r
Q

making use of the fact that qr was actually a function of P and w. Putting

these two expressions into (15) yields

- ] 1
To o ploep lpoa) = J dp' Jfdq

Tm(m.prlp'.q')

- n! Yy oo
8(Pr p )8(qr +q') p = *
2
0

+ 18 - p'2 - q'z

<
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a (p' - p.g" -~ q) b (p' - p.g' - )
v Llp? M - (pp' + qq')
2w K P
Q 0
or, defining p'' = p'-9p, qg'' = gq' - q,
(w.p_lp.g) = 2L Jdp'' fdg'!
To o 1l@p lp. . q

TP lp+p''g+ g'')

8(p. - p-p') 8a +a+q'") - b -

%— + 18 - (p + p")2 - (q + q")2
4]
a(p I,qll) b( [l Il)
* {QZ - [(p + p'")p + (g + 0" ")a] —ﬂ—j;——-——{} (16)
2] 4]

This equation may look a 1ittle messy, but 1its evaluation should be quite
straightforward.

Since equation (13) 1s just the "on shell" restriction of (14), 1ts

expression as an integral equation will be almost identical. We write

2
— 0 1 X - LIl
w.p..p ) = 39, S [ dp'tdq §(p, - p, - p'")
. Tm(w.prlpS +p'ta qQ'") B
a(qr ra v qtt) e =3 *
9§-+ e - (p_ + p")2 - (o, +a'h)
VO
zam( || n) b( Il Il)
*dw '""E:'——"_" [lpg + p'"p+lag + a'') a] -——j;:-—-- (17)

Viewed as a matrix equation to invert, we could express {17) as

2
E(w,pr.ps) = - [ [dp'tdq'! Mm(w.pr,pslp".q".u) Vim) (p''.q'") (18)
a=1
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where the operator M has elements

2
|18 | 1 - -
Mm(@.pr;pslp ,q ’1) - p

t [ 3
Tm(u.prlps +p'a )

- - L [ -
8(pr Pg = P ) a(qr ta.+q ) P, 3 ; >
- [N} - [
+ e - (p o+ p'")" - (g  + g'")

< |&
o N

and
plpg + p'') + qs(qs +q'')
- - [ ] [}
M(w.p . lp, q.2) = = Mple.p b lptta't,1)
and the vector V 1is just
a b
pim} . o m g(m) _ m
1 K ' 2 ]
[+] Iv]

It is pretty clear that for any reascnable discretization, we will have more
equations than unknowns, suggesting a least-squares {or perhaps some other
exotic nerm) inversion for V. Of course, Mm is a rather large matrix, and
no guarantee of an inverse has been presented here. Nevertheless we have here

at least a formal, if somewhat pedestrian, solution to the inverse problem.

Scheme 2

It might possibly be desirable to have an 1terative scheme which does not
require the inversion of a 106 X 106 matrix at every step. One way (suggested
by Razavy, 1975, for a constant density layered medium) would be to expand V
and T as a power series in the gross ampiitude of the data. That 1s, we

write

U(u.prlps) = aﬁo (w.p_lp)
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Equating powers of a 1n equation (7) we obtain

T = V. + 2 T ,6.V .
m m . m' o m-m
m'<m
= V. + A
m m
with
Am = z Tm G0 Vm m
m<m

Doing the same with equation (12), we get for m =1

2
2w90

4q|"qS

Do(u,prlps) = -

and far m > 1

<pr.-quvmlps.qs> = -<pr.-quAmlps.qs>

Pt 1Vilpg,a.0

{1%a)

(18b)

(18c)

(18d)

These equations may be expressed in integral form, just as was done for Scheme

1. With the definitions

1 a

2
<p.qIVm(w)Ip'.q'> = = |w Em-(p -p'.g - q')

’w o

b

- (pp' + qq') ;m-(p -p'g-q')

()
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and

Se

- e 2
Tm(w.prip.q) = <P, 2 -
o

le(w)lP-Q>

we can express equations (1%a) - (19d) in the following form; equation (1%¢)

becomes

-2 a (P, - P,-q-q,)
? 2 3310 Pg» 0y qs

w -(p P, - 0qnq)
4qrqs Ko r's r's

] bl(Pr - Ps"qr'qs)

Ps

= B (wp,lp,) (202)

which is just the Born approximation. Since A is zera, we have for T

1 1
a(p.-p,-q.~q)
1| 2 %1'Fp r
Tl(w.prlp.q) = {w K - (prp - qrq)
b.(p -p.-q _-q)
1'"r r (20b)
pO

Given Vm| . T for m' < m we have for Am [using (19b)]

m' "’
#o s
A (w, . = e Jdp' S dg!
pl@:p 1p.q) ) e p q
t [ ]
Tm.(w,prlp +p',g+q") )
wz . w2 w2
st ie-(p+p') - (qg+aq')
o]
a . {p'.q") b (p'.q")
*|w? _ELELT?______ - [p{p + p') + q(q + g*)] ~m~m~;——~———— (20c)
[v] o]

Then for Vm [using (19d)]
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o 3 (P P .-q -0.) o ) . b (PP .-q -q) )
© K PrPg = Gyl P -
o aQ
'ZfAm(wAPr|Ps;qs) (20d)

and finally for Tm [equation (19a), this time]

2
w am(pr-p,-qr-q)
Tm(w.prlp.q) = Am(w.prlp.q) * ZeK_ -

bm(pr-p.-qr—q)

- {p.p-q.q) Zxp (20e)

Equation (20a) actually overdetermines a, and bl' s0 in practice one
would use this equation 1in a least-squares (or perhaps somewhat more exotic)
sense. In equation (20b) we would find that not all the T1 values are
independent, If the dimension of gq is equal to that of @, then only T1 for
two P. values need be computed to determine VZ' In fact, two P values
should be sufficient for all Am and Tm. Even though they are quite large

matrices Am and Tm are not quite so cumbersome as they could be.

There are some other nice things about Scheme 2. Obviously, we have
avoided the matrix d1nverse (possibly at the expense of more tterations,
although even that isn’'t perfectly clear). Moreover, the potential, once we
have 1t, 1is a power series in the amplitude factor a. This means we can do
an vinversion even if the absolute amplitude of the data is unknown, picking,

once all the Vm’s are known, the amplitude which gives the "best" V.

The worst feature of this wmethod s that to calculate Vm’ all the
matrices Tm', m' = 1,2...m =~ 1 are used. Try not to think about storage
requirements; it will only depress you. The first and second iterations can
be calculated with relatively little storage; for some applications they may
be sufficient.

Finally, it 1is not clear at this point how either scheme reacts to band-

1imited data. In principle, knowledge of D at all pr allows calculation of
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V clear down to zero frequency, but the practice 1s 1ikely to be another

matter.

Inversion with a Local Potential

The inversion formalism developed above dealt with a potential function
with both non-iocal and frequency-dependent components. It i1s easy enough to
modify the scalar wave equation to produce either a 1local or a frequency-
dependent potential (though it seems we can’t have both). We will now redo
the inversion fFormalism for a local potential. Define

p—1/2

p{x) = A |

We then get the reasonably nice equation for ¢:

2
v

2
[V?+‘3’—--(—‘-7;2,l'-)-]¢=n (21)

which, when compared to a constant parameter equation,

2
o’ -
7 + s, = 0 (22)
v
0
yields as a potential difference
V(X)) = WPV (R - v, (23)
with
s 1 1 s P
V].(X) - 2 - 2 v VZ(X) - " (24)
v Vo

It seems that the quantities to solve for are now velocity and density rather

than modulus and density, but that’'s all right.
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We might also have employed the transformation described in "Gilding the
Born Approximation” +to get an almost local potential and vertical traveltime
rather than depth as an independent variable, but we will stick with this one

for now.

Even though the potential (23) 1s a 1ittle simpler than (3) (at least
until one tries to unravel V2 for 9) we can do nothing now we couldn’t do
before. However, we shall find some of the matrix algorithms slightly simpli-

fied. V matrix elements now have the form
<p.qlvip'g'> = L w2y (p-p',9-q') - vV (p-p' q-q')]
] 2' 1 * 2 )

To see how this changes things, look at Scheme 2. Rewriting (20a) - (20d) to

fit this potential, we have for m = 1

-1 (1) . BERTLE 3 R - 0 -
TN [“2V1 (P=pgr-tma.) = V' (p-p.=q,-q )| = D (w,p.lp) (25a)
17 2,(1 1 .
Ti(e,p Ip,a) = 5;{w vg )(p,-p.-qr-q) - v; >(pr-p.-q,-q)] (25b)
and for m > 2, we first find Am using
) T, ' (o.p lp+p’,a+q’)
A (w.p |p.g) = -3— T [dp' Jdg' "
moor 2% vm W 2 2
=5 + le-(p+p') -(g9+q')
v
0
-m! -m !
*[u2V§m m )(p'.q') - V;m m') (p'.q')] {25¢)
then Vm according to
2,(m) _ o _y(m) _ o - -
w V" (pmpoa-a -a) - VT (e -p . q.-q.) = -2x A (w.p Ip_.q ) (25d)
and finally Tm
2..(m)}

oV (p.-p_,-9.-9_)
1 r s r 's
Am(w.prlp.q) + 5 +

Tm(u.prlp.q)
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(m) L
Vz (PF'P: qr Q)

- om {25e)

The substantive change is in equation (25c). Note that now the only p (or
q) dependence inside the 1integral is 1in the form p + p' (ar g + q'); that is,

the integrals in (25c¢) are convelutions.

The Layered Medium

What happens 1f the potential V(w,x,z) 1s actually independent of x? In

this case, we can write

p.aiVie)lp'.q'> = : T ﬁ(p-p')[wzvl(q-q')-vz(q-q')]
(2x) °

Moreover Do' A , and T must also be diagonal in p:

ﬁa(w.prlps) (2x) ° 8(p.-pg) ﬁu(w.Pr)

T(w.prlp.q) 8(pr—p) T(m.prlq)

A(w.prlp.q) G(pr-p) A(w.prlq)

(I hope using 1dentical symbols for essentially different functions doesn’t

confuse anyone.)

So, equations (25) collapse to

Btop,) = [V 2a) - viD(-zq )] (262)
qur
for V1 and
T (w.p la) - ?E,l_,;— [ ama) - v e a] (26b)



150

for Tl' For m > 1 we first do

1

A (w,p lq) = - : T [dg'
m r (2x) % m*<m
Tmi(“'prlq' +q) * [w2v§m-m') (q') - v;m-m‘) (ql)]
. {26¢c)
2
w . 2 2
S+ ie-»p - (a+aq")
v
o
Then
2,,(m) (m) . 4
w V"0 (-2g ) -V, (-qu) = -(2n) Am(w.prmr) (26d)
and finally
Tolep le) = Atwpta) + =SV (cq a) - Wi o] czee)

(2%)

A Very Simple Example

Suppose density is constant everywhere. For 2z ¢ 0, v = va. Fer z > 0, v

= Ve In this case we need only look at pr = ps = 1. The data field D =
G - G0 has at the earth’'s surface
iv iv vV, -V
Glo(u)lo> = —tpftr . 2L T ¢ (27)
(2x)* (2x) % °f o

The potential V 1is

V(w,2)

hn
€
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- with Fourdier transform

00
V(w,q) = wZV(q) = £ = J Lo Ly o719z
0

(28)

(q_  1s short for 1im ¢-1ie.) Let’s see if this potential can be recovered
from the data. €0

The T1irst approximation to V 1is the Born approximation (26a):

2

-v
Do(w) = *——% wz V(l) 532
87w 0
or
, V.-V .
V(l)(q) = 112 [VF+V° = —--—-—-—?—/-Lé-—-— R (233)
(Zw)’voq_ f o (Zr)zvoq_

in the 1imit as v, = v , V(l) -V,

To attain a better approximation, we get

2 2
T (wla) = -—-’3’-—;-v(1)[-'—°1- 21w R (28b)

o) - e
o @
wvo[q+v]

Q|+

In this case, the integral equation (26c) can be evaluated analytically,
yielding

1 2

v - R (29¢)

(2x) voa_
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-21 2
T lwlg) = — > 5 R (29d)
) v
A
[s]
3 124 1 3
Vg o L2 _Log (23¢)
2
(2x) v @
3
r A
@
21 o L 3
-.“ L —u;—
T3(wlq) = , 13 v2 R (29f)
2aq "
ko y,

and so on. Our iterative method has given us 1in this case a power series 1n
the reflection coefficient R. For reasonable values of R, convergence would

appear to be rapid.

The Scheme 1 iterative method can also be done analytically in this case.

The first approximation to vV is just the Born approximation (29a). The

second approximation is

-9

i R
1,
(2% v2q_ 1+ 2R

Vig) ~

which is actually slightly better than the third Scheme 2 approximation.

Conclusions

We seem to have developed by brute force an 1nversion algorithm for
seismic data. The stability of the algorithm is open to question, and the
economics of it we would rather not talk about. For the one simple example
given above, the analytic properties of T and V allowed a solution by con-
tour integration. If these analytic properties were to hold 1in general (we
have no 1dea 1f they do) then one of the integrals 1in (20) or (25) might be

done analytically, in which case the algorithm might even be practical.



