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There are two basic approaches to the seismic¢ inverse problem. One is to
transform the problem into one which has already been solved, which means
expressing the unknown earth parameters in the form of a Schroedinger poten-
tial. The other 1is to develop an inversion theory fitted to the seismic prob-

lem as it stands.

Though the first option appears open only for a layered medium, it has
been applied there with a vengeance. In 1969, Jerry Ware and Keiiti Aki pub-
lished a formal inversion technique using the Gelfand-Levitan algorithm of
gquantum scattering theory. Though in the paper the technique was restricted
to plane waves at normal incidence, Ware, in his Ph.D. thesis, extended it to
plane waves at all sub-critical angles. Ware never published his extension,
apparently because he was unable to invert data with post-critical reflec-

tions.
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In this article we review the basic Gelfand-Levitan technigque as
develaped by Ware for seismic data, and extend it to post-critical reflec-
tions. Hopefully, the discussion will clarify why the technique is applicable

only to the layered medium, and why, incidentally, that may be just as well.

A. The Problem

Suppose we have a layered medium with variable density p(z) and velo-
c¢ity wv(z). For 2z <0 p and v are constants P, and Vo For large 2z,
p and v asymptotically approach different constants Py and vf. Since for
any practical computational scheme we will run out of patience before running

out of 2z, we will just say that p = Pe and v = vf for z > zf.

Consider the following experiment. A plane wave Wi(w-P-Z) of lateral
wavenumber p and frequency « 1is incident on the variable velocity-density
region from above (the region z < 0). The angle of incidence # of this
wave is Asin(pvolw). The experiment produces a reflected wave ¢r(u.p,z) in
the region 2z < 0 and a transmitted wave wt(u.p.z) in the region z > Ze.
The transmitted wave is never seen again, but the reflected wave can be seen

and measured.

The problem is, given the results of many such experiments using waves of
different frequency and lateral wavenumber, can the density and velocity func-

tions p(z) and v{z) be uniguely determined?

B. A Schroedinger Form for the Wave Equation

In a tayered medium, the scalar wave equation for pressure may be written

as an ordinary differential equation

o _1.38 _Ei_ _QE_ ( y = 0 (B-1)
3z s(2) 3z p(2) ¥ K(zy| ¥(@-Pr2) =

where p is density, K is bulk modulus, 2z is depth, w 1is frequency, and
p is lateral spatial frequency or wavenumber. A one-dimensional Schroed-

inger equation has a somewhat different form:
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a° 2
—5 e - Vir)| ¢{w.?) = 0 {B-2)
or

where the potential function V() is independent of fregquency and is a local
function of T (i.e. is not a differential operator). The Gelfand-Levitan
technique (as we shall see) solves for potentials of the Schroedinger form
given certain information at all w. Consequently, we wish to transform (B-1)
so it looks 1like (B-2).

To do this, we need somehow to rescue p_l from its z-derivative
sandwich, and at the same time remove K from underneath mz. It turns out
that there is more than one way to do this. We shall look at several, all of

which 1nvalve a change of both dependent and ‘independent variables.

We Took at the simplest way first. Make a coordinate transformation
z » ¢ defined by dz = v dr where v 1is some function of + {(try not to
think of v as velocity just yet). Also make a transformation V¢ =94y,
where ] is some other function of ¢. Putting these two transformations

into (1) and multiplying by K n, we get

2
Knd 18 1 _ Kkp 2 . -
v Or pv Bt 9 s T ¢ ¢ =0 (B-3)
If one remembers the identity
2 2

) 20 ¢ i)
A" Aar ., T 1N,
or or ¢ afZ 872

it is clear that the desired function for % is

S

n = (pv) (B-4a)

Further, the coefficient of (62)/(672) ¢ 1in (B-3) will equal 1, if

v = (k/p) (B-4b)
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which, by golly, is the velocity. With the definitions (B-4a) and {(B-4b),
equation (B-3) takes the Schroedinger form (B-2), with

2
22 1 8 )
Vir) = V(r,p) = pvi(s)+ 7T ——afz (r) (B-4c)

Actually V alsoc depends on the lateral wavenumber p, which really doesn’t
matter since p may be considered a fixed parameter. [That is, we solve for

V(r.,p) for some fixed p, given data at all w.]

What does matter, however, is that for p # 0 the potential (B-4c) does
not go to zero in a region of constant velocity and density. That in itself.
is not too big a concern; what is annoying is that regions of different con-
stant velocity will produce different constant potentials. This is annoying
because the Schroedinger equation {(2) has propagating solutions only where
wz > V. If wz <V over a large region, then the solution ¢ must decay

exponentially in that region. If V0 <V {as will normally be the case)

f
there will exist experiments with an 1incoming and a reflected wave, but no
transmitted wave. That 1s not a complete tragedy. As long as Vo 1s the low
velocity it will be seen that the Gelfand-Levitan method works just fine. If

Vo is not the lowest velocity, however, complications do arise.

This complication can be averted by choosing a slightly different
transformation. Instead of <considering p the fixed parameter in equation

(B-1), define a new parameter

voP
@ = —— = sin alN
a is just the sine of the angle made by the incident plane wave. Equation
(B-1) then has the form
1 wz
BZ ; 62 + E: v = 0 (B-5)

where Ke’ an "effective" bulk modulus, is
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« * T2z (-6a)
1 - a v
2
v

It is pretty clear that if av/vo ever exceeds 1, something bad wiil happen.
The experimenter, however, has control over a, so provided he uses plane

waves of a reasonable incidence angle, nothing bad will ever happen.

Equation (B-5) looks just 1ike equation (B~-1) without the p2 term. If
we now make the same transformations as was done to (B-1),

(dz = dr = dz/ve. V== wlne) we find that with

Ke v

v =7 s —t— (B-6b)
1

”e = (B‘GC)
pv

The wave equation takes the Schroedinger form (B-2) with

Vir) -+ V(r.a) = "—laf ", (B-6d)
e

This second transformation, which is the one suggested by Ware, appears to
have traded one problem for another. If the potential V(r,p) of equation
(B-4c) could be solved for at two or more p-values, it would be a very simple
matter to solve for v(r). and reasonably simple to solve for p(s). The
potential of equation (B-6d) will be somewhat harder to unravel. Assuming we
can solve for V(r,a«) at two or more a«'s, and then solve equation (B-6d) in
each case for ne(r). we stil1 have a probliem. Since r = v(z,a) is a dif-
ferent function of z for each «, some processes analagous to velocity
analysis and moveout correction must be applied before comparing the different
LR and solving for » and V. The second transformation seems to have
separated the h1gh~- and low-frequency components of v much 1ike normal pro-

cessing.
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Other Schroedinger-type equations can be formed from (B-1) in which p
takes the place of w. In the simplest we take «w to be the fixed parameter,
defining '

'
S\

and

¢ = vy

Then we can write a Schroedinger equation for ¢:

[ai +E - V(z,w)] ¢(w,E,z) = 0 (B-7)
where
2
. w2
E = > P
v .
min

is a Schroedinger energy, and

is a Schroedinger potential. For a fixed w, a suite of experiments with

0 < |p] ¢ wz/vi1n will give solutions to (B-7) for E < wz/v;1n. Provided w
is chosen large enough, the potential should be resolvable.

Alternately, the fixed parameter might be a« again. Then (B-1) becomes

1 p2
az;az+u¢ = 0 (B-8)

2

with
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The same sort of transformation as before gives

(47 + 2 - V(.01 $(p.ad) = 0 (8-9)
with
& = %5 {(B-10a)
x = } S SR (B-10b)
¢ = ny (B-10c)
v = ) (B-10d)
V@) = Tomg (B-10e)

This set-up has the joys and pitfails of the Ware transformation, except that
p in a real live seismic experiment is not 1ikely to be as well-sampled as

w.

In summary, there would seem to be at least four ways to put the scalar
wave equation for a layered medium in Schroedinger form, namely frequency-
wavenumber (f-k), frequency-dip (f-a), wavenumber-frequency (k-f), and
wavenumber-dip (k-e&). If post-critical reflections are to be excluded from
the analysis, then (f-a) would 1ikely be the simplest choice. If they are

to be included, (f-k) would seem to be best.
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C. The Gelfand-Levitan Solution

We have just seen a number of ways to transform the wave equation for a
layered medium intoe a Schroedinger egquation. We will now write down the
Gelfand-Levitan solution for the potential and then spend some time justifying
it.

Suppose that the reflection amptitude

¢r(w.f=0)

R(w) ¢1(w.f=0)

(C-1)

has been measured at all . Take the Fourier transform of this quantity to
obtain the time function
twt

R(t) = L fdwe”

S R(w) (C-2)

We then solve for a "Kernel" function K(t,t') via the Gelfand-Levitan equa-

tion:

K(t,t') = -R{t+t') - Ji dt'' R(t'+t'') K(t,t'") (C-3)

(K 1is only needed for t' £ t.) Once K has been found, the potential Vi)

is just
Vir) = 2 %; K(r.7) (C-4)

The justification of this procedure 1s fairly involved, and can carry the con-
scientious reader on a real scavenger hunt through the 1iterature. Presented
here is enough of the basic theory to plausify the solution while pointing the

fanatical reader toward more complete discussions of certain issues.

Qur "proof" of the Gelfand-Levitan inversion procedure will cover the

following points:
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{1) A function looking suspiciously 1ike K(t,t') (mainly because the same
symbol 1s used) is shown to be the kernel of a transformation between the
plane-wave solutions of a potent1a1;free Schroedinger equation and the
solutions of the full Schroedinger equation. This kernel satisfies equa-

tion (C-4) [2 Eg-K(f,r) = V(r)].

(2) This kernel function is shown to obey a Gelfand-Levitan-type equation as

a direct consequence of 1ts triangularity.

(3) By calculating the norm of the transformation invelving K, we show that
the Gelfand-Levitan equation satisfied by K is indeed (C-3). The
reader 1s 1invited to convince himself that only one solution to (C-3) 1is

possible.

We will begin by assuming that the potential V(¢) 1is zero at £ < 0 and

r > e The more general case will be treated later.

To show that K 1s the kernel of an 1integral transformation we must

first find the transformation. The potential-free Schroedinger equation

2
[?-—E--i- mz] ¢0 = 0 (C-5a)
or
has the plane-wave solutions
U (C-5b)

From the plane waves we can construct solutions to the full Schroedinger equa-
tion (C-2) wusing a triangular form of the Lippman-Schwinger equation. We

begin with a special Green's function

'
(=]
-«

”~
o

Qt(w.f)
T >0 {C-6a)

which 1s a sotution to
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2
Ez‘z + wz] g (w.r-r') = B(r-r') (c-6b)
T

We now can define two new wave functions as

sin wi{r-r"')
w

Hwr) = eyle.) + S dr V(r') $%(ar) (c-7)

It is easily verified that ¢* are solutions of the full Schroedinger equa-
tion (B-2), so we have defined a transformation linking ¢: with ¢i for all

w. The functions ¢i have the nice property of collapsing to the plane waves
+

¢0 for = < 0.

We are now ready to show that the mapping from ¢: to ¢i can be writ-

ten in the form

$500) = $Hen) ¢ L Kiert) $Xart) dr! (c-8)
-T

[The integral kernel K{r.,2"') defines a ¢riangular operator, so called
because K(r,r') is zero for #+' > ¢. Equation (C-8) is a Volterra equation,
because it defines an operator which is the sum of the unit operator and a

triangular operator.]

To demonstrate that (C-8) 1s valid, we just plug it into (C-7) and derive

an equation for K. We get

!i dr ! ¢:(w.f') K(e.#') = g! dr 512—251:1Ll ¢:(w.f') V(e!') +
Foder [ ogpr Sina(e-rt)
0 -r' w
$o(w,r'") V(r") K(r',r'') (c-9)

The right-hand side of (C-9) is a bit of a mess. However, if it can be put in

the same form as the left-hand side, namely

T +
J de? ¢0(w,f') Q(r,r")
-
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where Q 1s some (integral) expression independent of ¢, then the complete-
ness of the ¢: would allow us to identify K with Q. [If, of course, the
right-hand side of (C-9) cannot be put in this form, then (C-8) is not
valid.]

We will start with the first right-hand-side {(R.H.S$.) term [call it

If(u.f)]. Note that {(remember ¢: = et1“7)
sin w{e-7') & U A .
Yy $lert) = 3 g;'-r dr'' ¢ (w,7'')

So the first RHS term in (C-9) may be written as

1¥w,7) = L J? dr' v(s") J? dr'! ¢i(w.f")
1 T 2 '-r o

Blithely changing the order of 1integration, we get

11 /2
l’f(u.f) = %—f de v ¢0*(w,f") {(”T ) det V(s') (¢-10a)
-

which 1s the required form.

For the second RHS term in (C-9) [call it I;(w.f)} we can use the iden-
tity

sin w(r-z') .+ 1 = _},'_ Tilerier e g 1
" ¢o(m.f ) = 5 !l-_f+f. de ¢D(w.r )
which yields
" 1 7 r! r'l-rler +
e, 7) = S L de* V(e') J  de'' K(e',e'") S de''' ¢ (w,7''")
2 2 ! bl W 0

We again need to change the order of integration. It is convenient to define

two new integration variables

(This is not essential, but it simplifies the limits of the integrals.) Then
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T (rer'tt)/2

1Xwr) = J de'*t X e’y [ du -
2 -r o 0
(f_flll ’

. g‘ dv V(p+v) K(p+v . p-») (C-10b)
which is also of the required form. Thus, we have as an expression for
K(r,v') when ¢' € (-r,7)

1 (r+r')/2
K{e,r') = 7 J de'' V(')
0
(r+21)/2 (r-+')/2
+ f du S dv V(u+v) K(u+v,pu=-v) (C-11)

0 0

This equation establishes the consistency of (C-8) with (C-7). Note that as

' = », the second integral in (C-11) =» 0, giving the expression

1 T
K(r,r) = E'f de' V(r") (C-12)
0
or,
d -
2 5= K{r.?) = V(r)

which 1s just equation (C-4). (The interested reader can note that the above
derivation 1s going to work only if V 1s of the Schroedinger form; that is,

independent of e« and local in =.)

We have yet to establish that the K(r,r') defined by equation (C-8) 1is
indeed the solution of the Gelfand-Levitan equation (C-3). To do this will
require a couple of observations. First is that the triangular nature of K
dictates that 1t satisfy a Gelfand-lLevitan-type equation. Second 1s that the
kernel of the Gelfand-Levitan equation for K is 1n fact the reflection
response R. Both observations will require that we examine the properties of
the mapping ¢: - ¢t.

If this mapping were unitary, then ¢t would have the same normaliza-
tion, orthogonality, and completeness properties as ¢:. There is, however,

no reason why this should be the case, and we are forced to conclude that the
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mapping 1is probably not unitary. We can state that oi(w) is orthogonal to
¢i(w') if w' # w, since ¢i(w) are eigenfunctions of a Hermitian operator
with eigenvalue w. ¢+(w) and é—(u) are definitely linearly independent
(by construction), even though they may not be orthogonal. The most general

ortho-normatization for the ¢i is

@S(w) 195 (@')> = Jdr ¢5(wr)* 8% (w',r)

n

27 ${w-w') Mss,(w) (C-13)

[The s 1indicates + or -, and the 2« 1is there just to make this equa-
tion look more Tike the normalization equation

s s', . o . . _
<¢o(u)l¢° (0')> = 2% 8§ (w-w') Bss' for ¢°.] Mssl defines, for a given fre
quency, a little 2 x 2 matrix

Mlw) = (c-14)

which, because of the linear independence of ¢+ to ¢ , must be invertible.

If the ¢i form a complete set (for our purposes this means that any
solution to +the Schroedinger equation be expressible as a linear combination
of them; this will be true unless the potential has "bound state" solutions)

then we can also write a completeness relation

. -1 ,.s st
1 = 2—'- . §.=+ fMS'SI¢ (w)><¢ (w)ldw (C-15a)

abstractly, or, in terms of the wave functions,

${r-¢') = = 3 J dw M;% . és(w.f) ¢s'(u,f')* (C-15b)

If the ¢i are not complete, then the unit operator or delta function in (C-

15) becomes a projector onto the space spanned by the ¢t. In any case, it is
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trivial to confirm, using (C-13), that the operator defined by (C-15) acts as

+
the unit operator on any linear combination of the ¢7.

It may not look like it yet, but eguation (C-15) is +the Gelfand-Levitan

equation. It will take a couple of steps to make that obvious. Define the

+

mapping from ¢: to ¢ abstractly as the operator U. In Dirac notation,

197(w)> = Ul (w)> (c-16a)
According to (C-8), U may be written as

U = I+ K (C-16b)

where I is the unit operator and K is the triangular operator with ele-

ments K{r,r'). Equation {(C-15) can be written as

A 1 -1 ! t
I R AR ARE Ules(w)><8; (@)U
t
= Uwu (c-17)

where the operator W is defined as

1 -1 s g!
W= P szs' J dw Ms,s(w) |¢o(w)><¢0 (w) | (C-18a)

The elements of this operataor equation are

Wir.e') = E%' TS dw M (@) ¢5(er) ¢ (er)” (c-18b)
s,s!
R -1 iw(sr-s's') _
ol S?Sl J de Hs,s(w) e {C-18c)

Equation (C-17) may be written as

Uw = U (C-19a)
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Now, 1f U =1 + K, where K 1is triangular, it is easy enough to verify that

- t-
u 1 has the same form. Not only that, but U L (being the complex conju-

1

gate transpose of U ~) s also of the same form, except that 1its elements

are triangular in the opposite sense. That is, if we write

1-1

U = I + L
then
L{r,v') = 0 if r>r!
If we now write
W = I+ 0 (C-18d)

(this just defines an operator @), then equation (C-19a) takes the form

K+ Q+ KO = L (C-19b)

or, as an integral equation

K(r,z') + Qr,r') + J! dr'' K{r,s'") Qs'', ") = L(r,7v") {C-19¢)
-7

Since L(r,»') =0 for #' > ¢, this is a Gelfand-Levitan equation.

We have just seen that the Gelfand-Levitan equation 1s just the complete-
ness equation for a Volterra operator. It remains to be seen that the opera-
tor € = W - 1 1in eguation (C-19¢c) is the reflection function appearing in
(C-3).

This means we will actually have to figure out what the normalization
matrix M is. To do this 1s not so hard as one might imagine, though we do
need, for every w, to consider two experiments. In one, an 1ncident wave
¢:(w.f) is incident from above, producing a reflected wave R{w) ¢;(w.r) for

2 (0 and a transmitted wave T{(w) ¢:(m.f) in the region = > Te This was
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the actual experiment, R{w) the actual data. The other experiment has a
plane wave ¢;(m.f) coming in from the _region r > Ter a reflected wave
R{w) ¢:(w.f) in that region and a transmitted wave ?(w) ¢;(w.f) in the
region ¢ < 0. This experiment was never done owing to certain technical

problems, but we can still think about it.

These two experiments generate two solutions wt(w,f) of the full

Schroedinger equation. We have

$ (w,7) + R(w) ¢ (0,7) + Y (u1) » T(&) ¢ (0,1) (c-20a)
° o <0 * r>rf °
T{w) ¢;(w.f) « Y (o) = ¢;(w,r) + R(w) ¢:(w,f) _{C-20b)
<0 f)ff

Since the Wronskian of any two solutions of the Schroedinger equation is

independent of T, it is easily westablished that the four gquantities

R, R, T, T are not independent. We have 1in f'act1

Tw) = T(w) (c-21a)
T(0)*Rlw) = -R(e)*T(w) (C-21b)
IR(w)I2 + IT(w)|2 = 1 (C=21c)

Nevertheless, the two solutions $+ and ¥_ are independent, and are in fact

orthogonal. We have as normalization

<¢s(w)|ws.(u')> = 2% 8(w-w') sss, (c-22)

This may be proved by noting that *t are 1n fact the solutions of the

Lippmann-Schwinger equations

¥, (w)> = I¢:(w)> + G VIY () (C-23)

1To derive these, you need to realize that the complex conjugates of #t are
also solutions to the Schroedinger equation.
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where G0 is the exploding Green's function for the potential-free Schroed-
inger equation, and that the Lippman-Schwinger equation (C-23) defines a uni-
tary transformation. [If this is not obvious, hold on. More will be said

when we generalize the limits of V(e¢).]

So, if the solutions ¢i can be expressed in terms of the *t' the 1it-

tle normalization matrix M for the ¢* is easily computed.

From the asymptotic form

$ (w,7) = ¢:(w.f)
<0

we have

V(w.r) = ¢ (w.r) + R(a) $ (w.r)

u

¥ (o,7) T(w) ¢ (w,7)

or, solving for ¢t,

R{w)

¢ (1) = ¥ (w.1) - o ACHRS (c-24a)
- 1

, = oz ’ C~24b

¢ (v,7) Ta) v {w,7) ( )

With the normalization (C-22) for wt. this gives M as

1T 12+ IR 12 -R(a)™
Mlw) = “::-L—_,_-
I T(w) | ~R(w) 1

or., with the relations (C-21) between R and T.

1 1 -R(a)*

Ma) = —2 | (c-25)
1 - [R(w)2 Rl 1
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The inverse of M then has the form

1 R(a)™
R{w) 1

f 3 4

(w) (C-26)

which gives for the weight function W defined in (28)

s I dw M—l (w) eiu(sr—s'r')
s,5"=+ s's

Wir.e")

B

1
27

gP dw[eiw(f‘fl) + R{w) e-im(f+")] + c.c.

e

= 8(e-r') + R(r+r")

The function @(r,r') appearing in (C-19) 1s just R(r + '), so (C-13) s

the same Gelfand-Levitan equation as (C-3).

To completely justify the Gelfand-Levitan procedure we should prove that
there 1s at most one solution to (C-3), and moreover demonstrate convergence
of a few integrals used along the way. These details will be left toc the

fanatical reader.

D. Potentials with Two Asymptotic Values

The Gelfand-Levitan algorithm developed in part ¢ regquired & potential
which was zero for » outside the interval (O,ff). Actually, the same algo-
rithm will work for potentials which approach any constant value as r = o,

provided the approach 1s sufficiently rapid.

In part B we showed that for the seismic problem, post-critical angles of
incidence may be handled by converting the wave equation to a Schroedinger
equation whose potential approaches a different value at Tlarge r than at

small +. We will now extend the Gelfand-Levitan algorithm to this case.
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Suppose

vir) r ﬁ 0

]
<l

Normally, since velocity increases with depth, Vf > Vo'

We may, in this case, still devise scattering experiments. For all fre-

1
quencies greater than (vo)2 a wave may be sent into the earth from above,
producing a reflected wave in the region o < 0 and a transmission 1into the

region r > e Thus a solution to the full Schroedinger equation is

¥ (w.r), with asymptotes

1wor —1mor 1wff
e + R{w) e - ¢+(w.f) - T(w) e (D-2a)

<0 f}ff

Here we have used reduced frequencies v, and we defined as

. [z )
w = \ @ V0 (D-3a)
2 2
we = \ @ - Vf w > Vf
. 2 2
= i VF - @ a < Vf {D-3b)

reflecting the fact that for ¢ < 0, ¢ obeys the Schroedinger equation

@+l -V)y =0 r<o (D-3c)
T s}
while for ¢ > Ter it obeys another:
B2 + W2 -V)¥ = 0 - (D-3d)
T @ f f

We may also think of another experiment in which plane waves are incident from
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L
below, producing for w > (VF)z another function ¢ :

. -1wof : -1wfr . 1wff
T(w) e « Y (a,r) = e + R{w) e (D-2b)

r<0 f)ff

Together, ¢+ and ¢_ constitute all the scattering experiments that
can be performed. This gives a hint about the difficulties we are about to
encounter. For the simpler case in section C, 1in order to solve for V(¢), it
was necessary to generate at least one solution to the Schroedinger equation
at every frequency. The lowest frequency we <can generate from above is
w = (Vo)%' so if our Schroedinger equation has solutions for w < (VO)L2 (which
will happen if V(r) drops significantly below Vo over a large enough -
interval) we are likely in trouble. If V0 > VF, we are definitely 1n trou-
ble. But enough of that for now.

By comparing the Wronskians of the asymptotes of #i. the following

relations may be derived:

w

IR(w) 1% + ;f Tw1? = 1 W, (D-4a)
R(e)]Z = 1 v, <al <V, (D-4b)
Tw) = ZE T(w) o’ >V, (D-4c¢)
Iﬁ(m)l2 + Z\% I’f(m)l2 = 1 W > Ve (D-44d)
R(w) = -R(w)*T(w)/T(w)* W > v (D-4e)

These relations have been written down assuming V0 < Vf.
We will now assume that ¢+ and ¢_ together form a complete set of
solutions to the Schroedinger equation [which is again tantamount to requiring

that V0 (or Vf) be essentially the lowest potential at any depthl].
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The normalization of the wi 1s expressible as

W (@) ¥, (0)> = 2x 8w -w ') (D-5a)
W (@) l¥_(0')> = 0 (D-5b)
W (@)Y (e)> = 2¢ 8o.-0,,) (D-5¢)

These relations are easily proved by noting that #+ comes from a norm-
preserving tiransformation of exp(iwor) and w_ comes from a norm-preserving
transformation of exp(—uff) [see Kay and Moses (1955), Appendix II, for a
guideline]. So, if ¢ and ¢ together are complete, we have

+

2x B(r-r') = gP do_ ¥, (1) ¥, (a0)* + g” da; ¥_(w.1) ¥_(w.r)* (D-6)

Note that the integration variables in these two integrals are w and W

rather than .

So where do we go from here? Solutions ¢i(w,f) analagous to those in
(C-7) can now be defined:

tiw 7
Q

¢ (w.7) e + g’ dr! iiﬂ—ﬁéilill-LV(fl) - v 1 #5w,r ") (D-7)

+iw T
Since ¢i have the asymptotic form ¢i - e ° . *t can be expressed
in terms of ¢i as <0
V¥ (a.r) = ¢7(w.r) + R(w) ¢ (w.7) (D-8a)
v (wr) = Tw) ¢ (w.r) (D-8b)

The completeness relation (D-6) can then be put in terms of ¢*:

2w B(r-7') = gP du,_ (¥ (w.r) ¢ (w. o) + R(w) ¢ (w.r) ¢ (w.r)* +



130

+ R*(w) ¢ (w.7) ¢ (w2 )"
+ IR 1?2 ¢ (wor) ¢ (wr 1)1

1T(0) 12 8 (w.7) & (0, ") (D-9)

0
+ g' dwf

+iw T
If we take ¢:(w,r) to be e 0 , then the Volterra transformation (C-8)

Tinking ¢° to ¢ can be defined. Abstractly, we can write

195@) 1> = (1+K) ¢, (@)> = Ul$ (w)> (p-10)

where K 1is the triangular operator with the property

2 %; K(r.r) = V(r) - V_ (b-11)

This allows us to write (D-9) in the abstract form

1 = Uwu (D-12)

where

2e W = L dol ¢ (@)oo (@) + R(w) |8 (@)5<h ()]
0 o ‘o 0
+ R¥(0) 187 (@) 15 (@) ] + IR(w) 1219 (@)>< ()] ]

. g? du, 1T(w) 1% 197 (@)><4™ () (D-13)

Using the relation dw,. = dwo wn/uf, plus equations (D-4c) and (D-4a), the

f
second integral in (D-13) can be rewritten as

Q0

£ de, T - (RG] 2T 187 (@)>< (0]
(Ve-v,)*
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The lower 11mit of this integral may be extended to zero since, according to
L
equation (D-4b), 1 - IR(w)I2 =0 for we [0,(VF-V0)3]. (D-13) therefore can

be written as

Wos sh e [T (0)>@ (@) + 187 (w)><h ()]
2x @ o0 0 0 o
R(e) 19 ()< (w)] + R¥(0) 18 (0)> (w)]]

or, in the s-representation,

1 o (r-7") ~to (r-1')
W(r,?') = E;-g' dmu[e + d
+ R e-1w°(f+fl) + R*e1w°(f+fl)]
= 8(r-r') + R(v+r')
which is exactly the same weight function as was derived 1in section C. This

leads us to the same Gelfand-Levitan equation (C-3) as before. The only
change made to the Gelfand-Levitan algorithm by the more general potential s
the replacement of equation (C-4) by (D-11) (big deal).

If the potential V(r) has bound states, or if we conduct the scattering
experiments from the high-velocity side, the effect on the weight function
(D-14) will be to add a term which depends on parameters which we haven’t
measured. Thus only if Vo is essentially the lowest potential at any depth
is & unique inverse obtainable. Even then, we may be in a spot of trouble.
If the potential has a "well" or low spot in any region, even if the bottom of
the low spot has a potential higher than Vo, it can be 1lluminated com-
pletely only by wave functions which are evanescent (exponentially decaying)
in the high-potential regions. This is bound to cause trouble in any practi-

cal computation.
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| E. Relating an Impulse Response to the Plane-Wave Problem

In the actual seismic experiment dne deals with a f1ltered impulse
response rather than with plane waves. We can, however, establish a

correspondence, the details of which depend on the experiment.

As a simple example suppose a free surface exists at z=0, and that velo-
city is «constant down at least to depth 2z=a, where we place an impulsive
source and a string of receivers. In the s-coordinate system, we wish to
convert the impulse response G(w;fr=fa|rs=ra) (fa=a/v0) inte the plane-wave
refiection coefficient R{w).

This 1s easy enough to do. At any receiver depth T, and source depth

T, we can express G as
G(w;frlfs) = J(w) x(w.r<) ¢+(w.f>) (E-1)

where T¢ (f>) signifies the smaller (larger) of ¢ , =r . ¥ is the

r s +
solution to the plane-wave experiment, and x is a solution of the Schroed-
inger equation which goes to zero at « = 0. J(w) is there to give the

impulse response the proper normalization, namely

o’ 2 _y G = B(r-r' E-2
—_— W - (fr) (w.frlrs) = §(r-v") (E-2)

afz
r

Since we only need G in the zero-potential region, it will be very easy to

construct.

A solution x{w,r)., which goes to zero at the origin, is

x(w,v) = sin or

Using the asymptotic form

iwr iwr

' = e + Rlw) e
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the choice for J(w) which gives the proper normalization as

-1
He) = ST+ R(a)]
ar
iwr -iwr
sinwr a a
Glasr 7)) = - w = & 1++Ré?1)e (E-3)

If G 1s the measured quantity, then R(e) 1s just

sin w ra Twr

a
Glw;r |r ) + ———— ¢
L a'a W _
R{w) = sin w T “1wfa (E-4)
G(w;fa|fa) + — e

If the measured quantity is 6 1less a direct arrival Go’ we have as data

)

D(w) = G(M:falfa) - Gu(m;falfa

where

An expression for R in terms of the measured data field is

R(w) = - D{w) - (E-5)
21 sin ufa

Dw) - =

Expressions similar to (E-5), tailored to a particular seismic experi-

ment, should be easily derivable.
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F. Conclusions

The Gelfand-Levitan method seems applicable to the inverse seismic prob-
tem in a layered medium. It does require that the reflection R(w) be deter-
minable at all frequencies. This can’t be done, really. A practical source
will be band-limited, its phase and amplitude characteristics poorly known at
best. The effects of these imperfections on the Gelfand-Levitan inverse 1s
not crystal clear, but a good case, even for a layered medium, could be made
for an iterative inverse method which allows one to estimate unknown ampli-

tudes and phases as one goes.

Nevertheless, my conclusion is that 1if anyone ever discovers a layered

medium, we will be ready for it.
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