AN INVERSION METHOD FOR ELASTIC WAVE FIELDS

Robert W. Clayton

Abstract

The inversion of two-dimensional elastic displacement fields can be han-
dled in a very similar manner to the way the acoustic problem is handled. The
Born approximation of the Lippman-Schwinger equation yields a simple relation-
ship 1n the Fourier-transform domain between the observed horizontal and vert-
ical displacement fielids, and the scattering potential. Basically, the obser-
vations are a linear combination of the scattering potential evaluated along
four different shells. The four shells may be interpreted P to P, P to S, 3§
to P, and S to S scattering.

If the source is either purely compressional or purely shear, then one
experiment will suffice to invert the forward equation. 1If the source 1is a
(known) mixture of P and S components, then +two experiments with different

combinations of P and S components are necessary for the inversion.

Introduction

In the paper "An Inversion Method for Acoustic Wave Fields", the Born
approximation was wused to relate the "reflectivity" function to the density
and bulk-modulus variations. In this paper, we apply the same approach to the
two-dimensional elastic problem. In this case there is a substantial advan-
tage in determining the form of the reflectivity because there are four

reflectivity functions, but only three medium parameters.

81



82

The field experiment necessary for the inversion method 1s a standard
multi-offset reflection survey with two components of displacement (horizontal
and vertical) recorded at each geophone location. It is (apparently) neces-
sary to cast the elastic inversion method in terms of displacements because
exact wave operators for variable media can only be cast 1n terms of these

variables.

The use of the Born approximation will force several restrictions on the
procedure. Basically, the background P- and S-wave velocities must be con-
stant. The inversion scheme is 1imited to sub-critical reflections, and it has

no provision for handling multiples.

The Forward Scattering Equation

The starting point of the derivation is the two-dimensional elastic dis-

placement equation for a linear isotropic medium
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and u is the displacement vector (u.w)T. This is the form of the operator
used 1in previous SEP reports (cf. Clayton and Brown, SEP-20, pp. 73-96). For

the derivation here, 1t is convenient to rewrite the operator in an equivalent

¥ O 0 u 6 u
T T 2
L=V [0 "] J + ZH[“ O}H - 2H [“ O]H + pw I (2)

form:

where
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and 4=XA+2u. Note the normalizations for the operators Vand H

V v=VV =(8 +8 )I = VI and HWH=HH =881
XX 22

This form of the elastic displacement equation has a number of advan-
tages. First, if the shear modulus 1s constant, then the terms 1nvolving the
operator H annihilate each other. The resulting equation is very similar 1in
form to the scalar displacement equation.1 Second, as will be shown later, the
term involving the operator Vwill give rise to primary scattering (P to P,
and S to S), while the terms involving H generate converted scattering (P to
S, and S to P). This implies that the converted scattering is primarily

governed by the shear modulus.

The operator V; acting on the displacement field produces the divergence
and curl of that field. This means that it converts displacements to poten-
tials. The operator Vacting on the potential variables produces displace-

ments.

The Born approximation of the Lippman-Schwinger equation is

6 =G + G VG (3)
o 0o

where V = L - Lo. This equation is valid for the elastic case, if we realize

that the Green’'s operators, and the scattering potential are dyadics.
The problem about which we will perturb 1is the one for which the wave

operator is

L = pouz + V V; (4)

Hence, the scattering potential is

ITh scalar equation referred to is the SH displacement equation
(pw + V' V)u = 0.
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As with the scalar inversion, we will concentrate on finding the dimensioniess
functions above, and not worry about reconstructing the actual medium parame-

ters. With the above definfitions, the scattering potential becomes

2
a a 0 0 b 0 b
V=o |cwll + W v + 28%H Y - 28%HT H (6)
[+] 2 b 0 b 0
1 8°b
where a« and 8, defined as
L M
a2 = 2 and ﬂz s -2
o Py

are the background P- and S-wave velocities.

In this paper, we will not be treating a free surface.2 Instead, we will
stop the medium above the datum from scattering by assuming that a(x,z),

b(x,z), and c(x.,z) are zero for z<0.

For a point source, the observed reflected wave field 1is related to the

scattering potential by

\I’(xg,xs,w) = GOVGDFS(w) (7)

where F 1s a two-compaonent vector representing the relative source strengths

in u and w. S(w) is the transform of the source time function.

2This is a more significant assumption in the elastic case because we neglect
mode conversion on the free surface.
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The Scattering Equation in the Frequency Domain

Equation (7} has a more useful form 1in the Fourier-transform domain.

Transforming over xg and x, we have
k .k, = (k |x ><x 006 |x',z'> <x',z'|V]x",z">
Wk ok oow) = CkoIx ><x 016 | v
{x",z IGolxs,0><xslks>FS(w) (8)

Substituting directly from Appendix A we have

1
2 4
o®

- 1kgx' —1vg|z'| -1ngI2'I
- —— 1 ] n 1]
i%kg.ks.w) = 3. Jix'Jdz' Jdx" Sdz" e Age + Bge

»
- ik x" -iv 12" ~in izt
Vix',z"|x",z") e Ase + Bse FS(w) (9)

where we have made the following definitions (from Appendix A)

$ N
2 % (2 2
w 2 w 2
v = V(kx.w) = [—5 - kx] , n = n(kx.w) =75 - kx] ,
a S
X kx -y 1 0 kx v
A = A(kx’v) "2 | k 0 0 -y k|’ (10)
X XJ
and
! kx "M fo o) |*x "
B o= Blkem) = 50 |n k| 1o 1) [ Kk, (11)

The subscripts g and s in equation (9) identify the horizontal wavenumber (kg

or ks) to be used in the above definitions. Hence,

7y " V(kg.w) v- v(ks,w) " c »(kg,w) " = n(ks,w)
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and

Ag = A(kg.vg) As = A(ks,vs) Bg = B(kg,ng) Bs = B(ks,ns)

The operator A selects the compressional components from the displacement
fields. It accomplishes this basically by converting into potential variables,
selecting the P component, and then reconverting to displacements. The A
operator applied to a purely shear field produces a zero result. In a similar

fashion, the B operator selects the shear component of the displacement field.

Since V(x',z'[x",2") 1s zero for etther z' ¢ 0 or 2" < 0, the absalute
signs 1in equation (9) may be dropped. This allows us to identify each of the

terms in equation (9) as a four-dimensional Fourier transform over x', z', x",

and z". Hence,
_ ix
¥hokgo) = - S5 [AgV(kg, rlkgm IAL + A V(K o2 Tk .n )B
POW
B V(K o Tk w DAL+ BgV(kg,-wglks,vs)Bs] F S(a) (12)

Thus, the observed data is a linear combination of the scattering potential
evaluated along four different hyper-surfaces or “"shells". By noting the
positions of the A and B operators, one can identify what type of scattering
each shell contributes. For example, the first term involves the operators A
and As’ which means that 1t is P to P type scattering. The next three terms
in the sum are respectively S to P scattering, P to S scattering, and finally

S to § scattering.

Inversion of the Scattering Equation

The next logical step is to substitute the Fourier transform of the
scattering potential given 1in Appendix B into equation (10). However, since
the scattering potential 1s a sum of three terms, and 1t appears four times in
equation (10) with different arguments, we will simplify things first. We

will do this by making some assumptions about the nature of the source.
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If the source were purely compressional then only two terms in equation
{10) would be non-zero
2x

¥k ok .0) = - ———Z~[AgV(kg,-ngks,rs)As + Bgv(kg,-qglks,vs)As] S(w) (13)

POW

ib is a two-component vectar containing the horizontal and vertical components

of displacement due to a compressional source.

We can further simplify the problem by exploiting the highly structured
from of the operators A and B. It 1is clear form equations (10) and (11) that
both A and B have a zero eigenvalue, and that it occurs in opposite positions
(the 22-position for A, and the ll-position for B). Premultipling either A or
B by the eigenvector that corresponds to its zero eigenvalue will annihilate
the operator. The operators (which are the appropriate eigenvectors of A and
B)

1]
"

p [k .9 ] (14)

and
(15)

have the properties

The operators ep and eg have, as one might expect, the form of a divergence

and a curl operator, respectively. Applying these operators to equatian (13),

we have

- - — - 2' L] -—
Yoplk ko) = e, = - SToe, [Agv(kg, vglks,vs)As] S(w) (16)

Pob’

and
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- - - - 2' - -
Yok ok w) = ego¥, = o e [BgV(kg. ﬂglks.vs)As] (17)
0

We have now reduced the problem to the same level as was discussed in the
paper on acoustic dinversion (this report). To proceed from this point one
would transform equations (16) and (17) into midpoint-offset coordinates, and
make a change of 1independent variable kz = v v for equation (16), and

g

kz = -vg -9 for equation (17). Then after determining the coefficients of
the scattering potential given in Appendix B in the new coordinate systems,

one could least squares fit for the unknowns a, b, and c.

If the source were purely shear, then the other two terms in equation
(10) would be the ones that are non-zero. The reduction to two scalar prob-

lems is similar in this case.

If the source is a mixXture of P and S waves, then two experiments will be
required to separate the various contributions. For example, if the source has

compressional and shear strengths of Py and ) for the first experiment, and

p2 and 52 for the second, then the observed wave fields would be

¥ - [pI{AgVAS + BgVAs] + sl[AgVBs + BgVBsJ] S{w) (18)

¥, [pz[AgVAs + BgVAS] + sz[AgVBs + BgVBs]] S{w) (19)

For brevity we have omitted the constants in equation (10), and the arguments
of V and ¥. By applying the divergence and curl operators we can reduce these

equations to

e, ¥ = [pl ep A VA + 5y eP~AgVBS] $(w) (20)
ep ¥, = [pz epAVA, + s, eP°AgVBS] S (w) (21)
and a similar set for the eS operator. Selving for eP-AgVAs S{w) and

eP'AgVBS S(w) we have
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s.e.¥ - s. e, ¥
ey A VA S(w) = 2 Z L - 51 F 2 (22)
9 2P1 7 517
ahd
p,e ¥ - p.e_ ¥
e, A VB S{w) = 2P sl - 1P 2 (23)
9 Pas1 = P15,

As long as p then the problem can be reduced to the scalar case.

152 % P25y
APPENDIX A: The Green’s Operator For A 2-D Elastic Medium

The equation defining the Green’s operator for the 2-D elastic case is

’ ool + V V06 = -8(x-x') 8({z-2") (A1)

where V is defined in equation (2). Fourier transforming over x and =z in

equation (Al) we have

« 0 ik x'+ik_2z2!
s |wl1 + ¥ Tl =Le X z (A2)
0 2 D 2x
0 A8
where
k -k
- X z
V=1 K "
z X

This equation may now be solved for Go

1
z 0 e o
. 3 a (kz-v)(kz+v) 3 1kxx +1kzz
I X ve — (A3)
0 0 3 kx+kZ
8 (kz-ﬂ)(kz+»)
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where

2 ' 2
. el 2 - e 2
p = LZ kx] and n = [pz kx]

The domain in which we will use the Green’s operator is the (z,kx.w)-

domain. Inverse transforming over kZ we have

1
7 0 . o
: _ « (kz—v)(kz+v) %; e1kxx +1kz(z -2)
Gy = 3572 Jik, Y ] 7 2 (A4)
(2x) . 0 ) ktk,
g (kz-v)(kz+n)

This integral can be easily evaluated by contour integration 1in the complex
kz-p1ane. For the exploding Green's operator we choose the pair of poles that
makes kz(z'—z) < 0. To satisfy the radiation condition, the contour is closed

in the wupper half-plane for (z'-z) > 0, and 1in the lower half-plane for

(z'-z) < 0. Using the residue theorem we have

9 ]
1.e1kxx 1 0]~ T e-ivlz!-zl . |0 0]~ T e—inlz'—zl]
G = n v V ——m—m—— v V, —— (A5)
(zw)zprZ al0 0| « 2y gi1c 118 29
where
_ kx - N kx -9
V. =i and V, = i
« » kx B ] k,

The first term in the Green's operator depends only on the compressional
velocity (a), while the second depends only on the shear velocity (8). This

Teads to a natural definition for the two terms

i - ] - 1}
<k 016 Ix',z'> = =S [Ae izt geinlz '] (A6)
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where

I - )
0 0 VL and B =

[y

-1 = o T
A--é;-Va VB

oy

. 0 0
7 ‘G 0 1
The other Green’s operator that we need is the one transformed over the input

set of variables

-ik x!
X

- i R 1
R L A N L A T '] (A7)
(2x) zpow

APPENDIX B: Fourier Transform Of The Scattering Potential

The scattering potential may be written as an operator in the form

, | a 0 .
V(x',x") = cuzl + V 2 VT
1] 8 b
|0 b |0 B
+ 28%H [b U]H T . 28% T[b o]“ } 8(x'-x") (81)

We now Fourier transfaorm over x' and x", and integrate (trivially) over x":

2
Laut , laa 0 .
V(k', k") = IZ.Mx'Jk X'Newll + V ) v
(2x) 0 g%
lo b ] 1 0 b 1 - [Ty )
+ 28%H [b o]” T _ 28%4 T[b 0]H ] AL (82)

We now integrate the second through fourth terms by parts to reverse the order
of the 1leading operators and the exp(ik'-x'). This allows us to write down

the Fourier transform by inspection:

2
5 a a 0 "y

v(k', k") = —2 > |co’1 - v v
(2%) 0 8°b
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Jo b}, Y
- 28%H [b O}H T+ 2624 T[b O]H } (B3)

where
a = a(k'-k"}), b = b(k'-k"), and c = c({k'-k").

The various terms in a, b, and c can be collected together to produce a

final form for the scattering potential

k k k k
[] ] ] u uz 2 X X X 2
- ——— ] i 1 1"
V(kx,kzlkx,kz) = 7 |¢ I +a 5 | Kk
(2x) w zZx zz
] 1] 1 1] i [H
k k k_ k -2k k
ﬁz 22z Z X X z
M on 1w on
b ek« k_k (84)
" X'z “Tz'x X X



