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Abstract

A method is derived for determining density and bulk-modulus varijations
in the earth from standard reflection surveys. Explicit Formulas are given
for the variations that utilize the amplitude information present in the
observed wave fields. The method s based on a Born approximation of the
scattering equation, and is consequently restricted to sub-critical reflec-
tions. The computations are done in the Fourier domain, where the first part
of the algorithm 1s very similar to an F-K migration. The computationatl
expense of the method 1is only slightly greater than that of F-K migration
itself.

I. Introduction

In this paper we present a method for determining the bulk modulus and
density variations of an acoustic medium from reflection data recorded along a
horizontal datum. The field experiment necessary to provide the data for the

method is a standard reflection survey with multipie offset coverage.

In reflection data, there are basically two sources of information about
the subsurface: +traveltimes and amplitudes. The traveltimes of the various
wavefronts in the wave field provide information about the 1low spatial fre-
quency components (trends) of the the medium parameters. For example, the
velocity determined from NMO curves is a low-frequency average of the true
velocity of the medium. The ampliitudes of the wavefronts, on the other hand,
are sensitive to the high spatial frequency components {the reflectors).

Thus, the two types of information sample different aspects of the medium. In
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this paper, we will be using the amplitude variations to determine the fine

scale variations in the density and modulus.

The basic approach which we will be taking is to use a Born approximation
of the Lippman-Schwinger equation, to develop a forward equation relating the
surface data to a scattering potential. The scattering potential is an opera-
tor which depends on the medium parameters, and essentially represents the
reflectivity of the medium. The highly structured form of the scattering
potential for the acoustic problem will allow the forward equation to be
inverted analytically. Thus, we will derive explicit formulas for the density

and modulus variations as functions of the surface data.

The use of the Born approximation will entail several assumptions about
the nature of the medium. Basically, the modulus and density variations must
be small and localized (free of trends). Also, the method, as presented here,
has no provisions for handling multiples or transmission effects, and is res-

tricted to sub-critical reflections.

We will assume the source used in the experiment is band-limited. This
usually causes problems with inversion methods because at some point in the
inversion scheme, the source has to be deconvolved. This, of course, can be
successfully done only within a limited passband, and attempts to invert data
outside this passband will usually cause instabilities. We will bypass this
problem by only reconstructing the parameter variations within a limited spa-

tial frequency range.

II. The Born Approximation for the Scalar Wave Equation

In this section we will give a brief derivation of the Lippman-Schwinger
equation for acoustic problems. The Born approximation of this equation will
lTead to a simple relation between the observations and the scattering poten-

tial.

The starting point of the derivation is the acoustic wave equation for a

lTinear isotropic medium

LP=—-—+V~%—VP=0 (1)



59

where P is the pressure field, K is the bulk modulus, and p is the density.
Associated with the wave operator (L) is the Green’s operator or resolvent

which is formally defined as (Taylor, p. 129)

G = -L (2)

The Green’s operator produces the response of the medium at one point due to
an impulse at another. The knowledge of the Green’s operator for a particular

problem completely specifies the solutions for that problem.

In general, we cannot analytically determine solutions for equation (1)
for arbitrary variations in p and K. Instead, solutions are usually cast as a
perturbation about a simpler problem for which analytic solutions are avail-
able. In this paper we will perturb the Green’s operator, and the problem

which we will perturb about, is the one for which the wave operator is

2 2
L = Fﬂ. + l_.qﬂ = Fﬂ. + l_.Q;] (3)
0 K P K p
0 ) o o

where KO and po are constants.

To relate G and Go (the Green’s operator for Lo)' we employ the simple
identity

A=B+ 8 (B"l - A'l) A

and associate G with A and Go with B. Hence,

G = G0 + G° VG (4)

where V = L - Lo' Equation (4) is the Lippman-Schwinger equation for G, and V

is termed the scattering potential. As written, equation (4) is implicit in
G, but it can be formally solved

- 1 .

G = (I - GV) "G (5)

[#]
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The Born series is an expansion of the right-hand side of eguation (5),
in powers of the operator VGo' The series can be generated by recursively

substituting G for itself in the Lippman-Schwinger equation.

G =6 + G VG
o] o]

G =G + G V(G_ + G VG)
0 4] o] 0

G =

G +GVGE + G VG V(G + G VG)
o 0 o 00 o o

Rewriting this in sequence terms of powers of the operator VGo' we have the

Born series for G

G=6G +6 2 (VGo)i (6)

The Born approximation of the Lippman-Schwinger equation is the first two

terms of the series.

G =G + G VG (7)
o o 0o

In Dirac notation the Born approximation 151

X 161X > = <x_ |6 x>+ <x_|6_|x"> <x"Ivix"> <x'|6_|x > (8)
g 3 g o s g o 0D s

where xs is the location of the source, and xg is the observation point. When
the velocity deviations of the medium are localized (i.e. there are no
trends), the various terms in equation (8) may be physically interpreted with

the aid of the Feynmann diagram shown in figure 1.

'In this paper, repeated dummy variables will generally signify an implied in-
tegration. For example, the s?cond tsrm in equation (8) is really an integral
over the intermediate points x and x
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FIG. 1. The Feynmann diagram for interpreting the Born approximation. The
operator <X |G_|xX_ > represents the q1rect wave from the source point x_ to the
receiver point x . The operator <x |G _|x > determines the wave fiel at a
subsurface poin% x' . The wave field is then scattered (reflected) by the
scattering potential V, and evaluated at the subsurface point x". The final
operator <X |G Ix"> determines the wave field over the path from x" to the
receiver poiﬁt § . The total response at the receiver is the integration over
all subsurface pdints x' and x".

The suitability of the Born approximation depends on the size and nature
of the scattering potential V. There are basically two restrictions. First
of all, since the Born approximation is obtained from a series expansion, it
is necessary that the norm of V be small in order that the remaining terms can
be neglected. Secondly, the variations in V should be local, that 1is V should
not have trends in 1t. The necessity of this restriction is obvious, if we
examine the behavior of the direct wave. Under the Born approximation, the
traveltime of the direct wave is based on & constant velocity. If, however,
there is a trend in velocity from the source to the receiver, the traveltime
will be incorrect by an amount that gets progressively worse with larger
offsets. If the above two assumptions about the scattering potential are
valid, then the terms omitted in the Born approximation can be interpreted as

transmission and multiple reflections.

For the acoustic problem, the scattering potential is simply the differ-

ence of the wave operators in equations (1) and (3).

V=w2[}-—-1-— llv (3)

K K
0
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For convenience, we will define the dimensionless functions

a b
V=ow E’"+V;—V (10)

For the inverse problem, we will concentrate on finding the functions a(x,z)
and b{x,z), and not worry about reconstructing the actually density and

modulus variations from them.

The observations of the reflected wave field are made on the horizontal
surface (zs = zg = 0). They are  functions xg, Xg and w. Using the Born
approximation, the observed reflected wave field is related to the scattering

potential by

1 1 1 ] " ] n ]
ing,xS.m) = <xg.0|Golx L2 > <x ,Zz [Vix ,z > <x ,z |G°|x5.0> S{w) (11)

where S{(w) is the Fourier transform of the source time function. In this
paper we are not including the effect of a free surface. We will, however,
stop the medium above the datum from scattering by assuming that a(x,z) and

b(x,z) are zero for z < 0.

Equation (11) is a forward equation in the sense that, given the density
and modulus variations (a and b), the observed wave field can be computed.
The remainder of the paper will be concerned with the inverse problem: finding
a and b from measurements of ¥. The first step is to find the Green’s opera-
tor for the homogcneous problem, and this is done in Appendix A. The next

step is to examine equation (11) in the Fourier domain.
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IIT. The Scattering Equation in the Fourier Domain

We will now use the fact that the Green’s operator in the (w,kx.z)-domain
looks very much 1ike the kernel of a Fourier transform to obtain a simple

equation relating the observed data and the scattering potential.

Fourier transforming equation (11) over xg and xs, we obtain an expres-

sion for ¥ in the (kg.ks,w)—domain.
] [}
T(kg.ks,w) = <kx|xg> <xg.0|GD|x W Z D
] ] n " n n
X,z |[VIx ,z > <x ,z IGles,0> <xs|ks> S{w) (12)

Substituting in directly from equations (AS) and (A6) we have

13 1
ik x -» |z
(g gI 1)

1 1 1 " " e
‘I’(kg.ks.w) = 5w Jdx Jdz Jdx Jdz i

-2v
g9

S(w) (13)

where

At the outset, we assumed that both a(x,z) and b{(x,z) are zero for z ¢ 0.
This means that we c¢an drop the absolute signs in equation (13) because
V(x

',z'lx",z") will be zero for either z' < 0 or 2" < 0. Equation (13) can

now be recognized as a four-fold Fourier transform of the scattering potential

over the variables x', z', x , and z". Thus, we obtain a very simple rela-

tionship between observed wave field and the scattering potential.

2
pru

iKkg,k ,0) = -

S 4y »

P V(kg,—vglks,vs)'S(m) (14)
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In general, V is a function of four variables. However, from equation
(14), one can see that the surface data depends only on the values of V on a
shell or hyper-surface in the four-dimensional space. This is referred to 1in
scattering theory as the "on-shell" part of the scattering potential. At
first glance this would seem to make the inverse problem of finding the
scattering potential from the observations under-determined. However, for the
scalar wave equation, V has a highly structured form as is shown 1in Appendix

B. This will allow the inverse problem to be solved.

IV. Inversion of the Scattering Equation

We can now do the final step of relating the surface data to a and b in
the Fourier domain. From Appendix B, the Fourier transform of the scattering

potential is

vik'|K") =

1 2[@2 a(k'-k") v, vb(k'-k") (15)

(2x) Ko o

Combining equations (14) and (15) we have

pzw2
-1 o 1
i(kg,ks.w) il [E; a(kg—ks,—vg-vs)

(vgvS - kgks) 1
+ ;— b(kg-ks,-vg-vs) S{w) (16)

2
) o

The inverse problem is to find the functions a {the bulk-modulus varia-
tions) and b (the density variations) from the surface data ¥. Since a and b
depend on kg - ks we will start by changing to midpoint-offset coordinates.

The midpoint wavenumber (km) and half-offset wavenumber (kh) are defined by2

2These definitions of midpoint and offset wavenumber differ from previous SEP
reports. The difference arises because we have used a conjugate rather than a
symmetric relationship between source and receiver. This follows directly from
the Dirac notation. If the reader has any doubts, he can change equation (11)
into midpoint-offset variables, then do a double Fourier transform and compare
with equation (16).



65

k =k -k and k, = k_ + k (17)

Also since a and b depend on vg + ¥ a new 1independent variable (kz) is
defined

L
2 2 2 :
U (Y- I [ Y -
kz = ’g v = [ 3 kg] [ 5 ks] (18)

After a little algebra, equations (18) and (19) may be combined to obtain

expressions for w, ’g' and v

v 2,2 2, 211% _

w=-Y kz[[l N km/kz][l + kh/kz]] = w(k .k k) (13)
kz 2] -

P [1 - kmkh/kz] (20)
kz 2

v = 5-—[1 + kmkh/kz] (21)

To complete the coordinate transformation, a new dependent variable R, s
defined

- gﬂ__‘l‘[km.kh.w(km.kh.kz)]
h’ z ’, S[u(km,kh.kz)]

R(km,k (22)

Equation (22) is really the F-K migration of the surface data in midpoint-
offset coordinates (Stolt, 1978). The result of migration is usually con-
sidered to be an image of the reflection coefficients in the earth, so one may
view R as a reflectivity function. The problems associated with $ in the
denominator of equation (23) will be discussed in a moment. First, we will

relate R to a and b.

Using the relationship between ¥, a, and b given by equation {(18), and
the coordinate transformations of equations (17) and {18), we can obtain an

equation for R in terms of a and b.
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ROk .k, .k ) = Cl(km,kh,kz)[a(km,kz) + ok, k) b(km,kz)]

where
k2 + k2 + kz[l + kz/sz
Colkpky k) = - % — 2 3
1 "“h' "2z
kZ - kmkh /kZ
and
ki . kE
Cz(kh'kz) T2 2
k™ + k
b4 h

To separate a and b in equation (23) we define the function

= R(km,kh,kz)

Rl(k .k Eoeee——— e
m’ h’ z Cl(km'kh’kz)

R' is regular everywhere except at the origin (km=kh

(23)

(24)

(25)

(28)

=kz=0). A comparison of

R at any two offset wavenumbers will yield a separation of a(km.kz) and

b(km,kz). A more robust method of achieving the separation would be to minim-

ize the square error
1 2
[R (ko) = alk k) = €, (k k) b(km,kz)]
A solution which does this 1is

ch-ZR' - 2c2R'-zc2
alk .k )

2
N ZCZ - ECZ ZCZ

and

] I
N ECZR - 2R ECZ

b(k .,k ) =
m 2
N Ecz - ECZ ECZ

(27)

(28)

(29)
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where the summations are over offset wavenumber, and N is the number of offset
wavenumbers. N 1is actually a function of km and kh. Care must be taken to
average only over kh points where data exists. This point will discussed

further in the section on implementation.

The appearance of S(w) in the denominator of equation {(22) will be a
source of trouble, if we try to implement the inversion directly, because the

source we have assumed has a finite bandwidth Aw(km,k ,kz). Attempts to find a

and b outside this region will be unstable. One :an ighore the source &ll
together if one is willing to live with the fact that all discontinuities in a
and b will have source wavelets attached to them. A more reasonable approach
would be to deconvolve the source as well as possible within the passband, and
set a and b to zero outside the passband. This will define a finite region 1in
which a(km,kz) and b(km,kz) can be determined. The shaded portion of figure 2
shows this region for kh = 0. For larger kh it is 1in theory possible to par-

tially fil11 in the missing hole in the middle, as indicated by equation (19).

ks

Aw(km‘o,kz)

yd

FIG. 2. The shaded portion shows the region in which the density and wmodulus
can be successfully inverted. By using increasingly higher wavenumbers, it is
in theory possible to fi11 in the hole in the center.
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V. A Check On The Scalar Scattering Equation

To verify that the separation between density and modulus obtained in the
previous section 1is not an artifact of the Born approximation, we will re-
derive equation (23) for a simple case. The case we consider is that of a
single horizontal reflector. 1In this case only km = 0 contributes, and conse-

quently the coefficients Cl and C2 are

and C, =

We may convert these coefficients to ones that depend on a plane wave

incidence angle (#), by setting

v kh Vo Z
= sin & and = cos &
» o
Hence, C1 and C2 are
1 1 2 2
C1 = -7 > and Cz = cos # - sin @
cos @

This means that the reflection coefficient of the Born approximation fis
K yJ
R(#) = — L [—°- 1] + (cos’e - sinzv)[--o- - 1H (30)
2 K p
4cos @

To check equation (30) we will start with the plane wave reflection coef-
ficient (Claerbout, FGDP, p. 173)

o\
NS

2 2
[szecOJ -[szecO]z
R(#) = 11 1 2 2 2

1
%

(31)

e

2 2
[plklsec 01] + [pzkzsec 02]

where subscripts 1 and 2 refer to the media above and below the dinterface,

respectively. We may generalize this to a continuous medium by putting
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equation (31) in a differential form.

%

3 [ 2 ] a3 [ 2 ]
=—|pKsec @ =—|pKsec @
R(p) = 2282 _ Az @z . (32)

2
[szecZO]

N
—
k-]
x
7]
[/
[g]
L
—

where Az is a frequency-dependent length scale. Using Snell’s law, we substi-

tute
seczo = [1 -k p2]~1
J

where p is the ray parameter. Differentiating equation (32), while keeping p

constant we have

P K 2 2 K »
Az F4 V-4 p v z 2
R(#) = = [—-*- “‘] M [_ “] (33)
4 { p K N
Collecting terms in p and K we have
K p
R(®) = —-AEE—-[EE + (coszo-sinZO)—El (34)
4cos 8 e

Equation (34) has the same angle-dependence as the reflection coefficient

derived from the Born approximation [equation (30)]. If we use the approxima-

tions that
K K p »
o z o z
— - ] ~ -AZz == and — -1 ~ <Az — 35
m ~ % n p ~ p (35)
then the two forms of the reflection coefficients are identical. This con-

firms the basic separation of modulus and density effects deduced under the
Born approximation. This example also points out one of the basic restric-
tions of the Born approximation. The magnitude of the true reflection coeffi-
cient 1is never greater than unity for any value of @. The Born reflection

coefficient however, obeys no such bound. This means that the method
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presented here is restricted to sub-critical reflections.
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FIG. 3. A comparison of the exact reflection coefficient and the Born approx-
imation. In the 1left panel, the parameter ratios are pz/p = 0.91, and
K /I<1 = 1.27. The critical angle occurs at 58 degrees. In thé right panel,
tﬁe parameter ratios are p_./p, = 0.67, and KZ/KI = 1.0, and 1n this case the
critical angle is at 55 degrees.

A comparison of the Born reflection coefficient [equation {(30)], and the
exact plane wave reflection coefficient [equation (31)], is given in figure 3.
The comparison 1s qu1£e favorable for sub-critical angles, but +towards the
critical angle the two curves start to deviate. Beyond the critical angle the

Born approximation completely breaks down.

VI A One-Dimensional Example

The method outlined in the previous sections was tested on & one-
dimensional example. The formulas used in the inversion were basically those

given 1in secion IV, with km set to zero.

In table 1, the parameters of the model are given. A synthetic gather
generated by ray tracing 1s shown 1in figure 4. The synthetics include all
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Layer thickness p K v
1 250 2.5 62.5 | 5.000
2 250 2.6 65.0 5.000
3 300 2.5 65.0 5.099
4 150 2.6 62.5 4.902
5 250 2.5 62.5 ] 5.000
6 250 2.6 65.0 5.000
7 300 2.5 65.0 5.099

TABLE. 1. Parameters of the one-dimensional model.

refraction and transmission effects, as well the reflection effects of the
model. The model was not specifically constructed to fit the assumptions of
1

the Born approximation, however, & £ 2 geometric spreading factor was used to

make the example two-dimensional.

In figure 5, the wave field is shown in the (kh,kz)-domain. after the
frequency stretch [equation (18) with km = 0] has been applied. The fact that
the Tocations of the peaks and troughs of the wave field are virtually
independent of kh means that the migration part of the algorithm has worked.
The sharp cut-off in the upper part of the wave field occurs because the
evanescent zone (kh > w/v) is excluded. The summations in the least squares

that follow were restricted to the non-zero part of the wave field.

The inversion of the one-dimensional example is shown in figure 6. The
top three traces are the zero-offset reflectivity (r), the modulus variations
(a), and the density variations (b), derived directly from the model. The
next three traces were generated by filtering the top traces with a source
wavelet. The bottom three traces are the results of the inversion algorithm.
The reflectivity trace is a straight stack over kh' while a and b are deter-
mined by least squares [equations (28) and (29)].

The inversion results mimic the filtered model parameters quite well,
with two exceptions. First, the inverted traces are noisier, which is prob-
ably due to the finite extent of the data in the offset dimension. Presumably

the application of a more sophisticated window to the data before the Fourier



N

1.0
SecC

FIG. 4. A synthetic gather from a seven Ilayer
one-dimensional model. The five farthest offset
traces were tapered to zero.
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FIG. 5. The migrated wave field 1in the Ars.rnv-
domain. The abrupt cutoff in the upper part of
the figure is edge of the evanescent zone.
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FIG. 6. Inversion results for the one-dimensional model. The top three
traces are the zero-offset reflectivity (r), the modulus variations (a), and
the density variations (b), determined directly from the model itself. The
middle three traces filtered versions on the top three. The bottom traces are
the results of the inversion.

Fourier transform wouid help this problem. Second, the position of some of
the events 1s slightly off due to the fact that the Born approximation uses a
constant velocity. No attempt was made in this example to deconvolve the

source wavelet.
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VII. A Two-Dimensional Example (in progress)

The inversion scheme was applied to data recorded in a water tank over
the model shown in Figure 7.3 The words "1in progress" are in the title of this
section because the inversion scheme has not yet worked on this dataset. The
inversion we obtain indicates that the density and modulus variatians are
equal in magnitude and opposite in sign. A quick examination of the model in

figure 7, shows that this cannot be the case.

FIG. 7. The model for the two-dimensional example. The 11ine at the top indi-
cates the 1line along which the data was recorded. The white background is
water with a velocity of 1525 m/sec. The 1ight gray material has a density of
1.02 and a velocity of 1036 m/sec. The dark gray materijal has a density of
1.28 and a velocity of 938 m/sec.

The probiem seems to 11ie in the fact that there is some amplitude effect
that we are not accounting for. This is shown in figures 8 and 9. Figure 8
is a plot of a common-midpoint gather from the middle of the line, and shows
that the amplitude variations with offset are basically smooth. Figure 9 is
the km = 0 component of the migrated wave field 1in the (kh,kz)-doma1n. The

3We thank Gulf 011 Corporation for supplying us with this data.
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amplitude in this case oscillates with offset wavenumber. For example, there
is almost a null in the wave field at the fourth offset wavenumber. It is not

clear to us at this point where this variation is coming from.

APPENDIX A: The Scalar Green's Operator

The Green's operator that we will use 1s the one that solves the equation

p K

2
[l— 7 + 9—] 6 Ix'> = - <xix"> (A1)
o [¢]

To find G0 we Fourier transform this equation over X

2
ik-
Lokek - 2| ckig [x'> = 2= etRX (A2)
p K o 2
o o

where k is the dual of x, and has components (kx'kz)' In the two-dimensional
problem (1ine sources and receivers), x and kx are scalars. The equations
that follow will hold for the three-dimensional problem if we consider
x and kx to be two component vectors, and adjust the occasional factor of 2«.
The sign convention of the Fourier transform that we use in this paper is

Kotlw, k> = e @t * KX

Selving for G0 in equation (A2) we have

] 1
ik x + ik_z
P X 4
0 e

: E;'(kz - v)(kz + p)

(A3)

where

[N\l

2 K

o 2 2 o

v = |— -k and v = —
2 X 0 p

v0 o
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The domain in which we will use the Green’s operator will be the (kx.z)-

domain. To find the Green’s operdator in this domain we inverse transform over

k_.
z

ikox' + ik_(z -2)
L P, o X z
<k 2|6 |x 2 > = m———m—e [ dk - (A4)
X 0 (21)3/2 z (kZ v)(kZ + p)

AIm kg

~,

NI kp

-y ) Re ki -y m R& kz

1 * / r L*l * 1 >
+V ~ v
ZI-Z > 0 z-2<0

FIG. 10. The integration contour for the Green's operator is shown for two
cases

The transform is evaluated by contour integration in the complex kz—domain.
The contours are shown in figure 10. Two considerations affect the choice of
contour path. The first is that we want the exploding Green's operator, which
means we only want to 1include the contribution of one of the poles. The
appropriate pole is the one which makes kz(z'—z) <0. Second, we need to
preserve the radiation condition that the field goes to zero as z goes to
infinity. For (z'-z) > 0 the contour is closed in the upper half-plane and
the pole at k_ = ~-p¢ 1is included. When (z'-z) < 0, the contour is closed in

2z
the lower half-plane and the pole at kZ = +¥ is enclosed.
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Using the residue theorem the Green’s operator is found to be

ik x' —1v|z'-z|
p X
o e

(2')%

1 I 1 [ . .
<k .2zl6 Ix" .z > = <k [x> <x.2|G Ix ,z'> = i 5 (AS5)

To find the form of the exploding Green's operator when transformed over the
initial set of states we simply forward transform over kx and inverse

transform over x . The result is

—1kxx' —1v|z'—zl
[ | [ | poe
X ,2 |G |k ,2> = &t ,2 |G [x,2> x|k > = 1 {AB)
0 x c X

T ~
(2) ¢ 2y

APPENDIX B: The Fourier Transform of the Scattering Potential

If the scattering potential is local (b=0 in the present formulation},
then its Fourier transform would be trivial to compute. In the general acous-
tic problem, the potential is non-local because it contains spatial deriva-
tives, which means we have to exercise a little more care in finding its

Fourier transform.

An equivalent form for writing the scattering potential is

Vix'[x") = (0l :‘—éi‘—)—,» v b—f,—"—l V) B(x'-x") (B1)
Q 0

] n
We now Fourier transform over x and x .

v ik'ex', 2 a(x') "X
0w —+

VIK'IK") = (20) 2Jux" fdx"e (w® & v P—ﬁ-"—-—’— 7 )8 (x'-x"ye 1K

o ]
First we integrate over x' to obtain

(k' - k"yx' G2 atx))

K
]

Vik'IK") = (2m) 2| fax' e

1 ' 1 n i
o fix' X g X gtk



In the secohd ‘integral we integrate by parts (Ju dv = uv| - Jv du) with

AL
u=e1k X and dv =V':——

s}

- e-‘ik" _xl

This changes the second integral to

- fdx'[ Veik"xl] E-‘(’—:l [ Ve_“‘"'x|]
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Combining the first and second parts of the integral, the Faourier transform of

the scattering potential is

K

v(k'IK") = (21’)-2{u2 etk ) bz )}
s} 0

The medium parameters (a and b) are functions anly of the difference

the two wavenumbers (kI - k").
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