INVERSION OF REFRACTION DATA BY WAVE-~FIELD MIGRATION

Robert W. Clayton and George A. McMechan

Abstract

The process of wave equation migration is adapted for refraction data in
order to produce velocity-depth models directly from the recorded data. The
procedure consists of two linear transformations: a slant stack of the data
produces a wave field in the p-¢ plane which is then migrated using £=0 as the
imaging condition. The result 1is that the data wave field 1is 1linearly
transformed from the time-distance domain 1into the slowness-depth domain,
where the velocity profile can be picked directly. No traveltime picking is

involved, and all the data are present throughout the inversion.

The method is iterative because it is necessary to specify a velocity
function for the migration. The solution produced by a given iteration is
used as the migration velocity function for the next step. Convergence is
determined when the migrated wave field images the same velocity-depth func-

tion as was input to the migration.

The method obviates the problems associated with determining the envelope
of solutions that are consistent with the observations, since the time resolu-
tion in the data becomes transformed into a depth resolution in the slowness-

depth domain.
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Introduction

Refraction profiles are conventionally analysed by extracting traveltime
information from the data and performing a Wiechert-Herglotz integration to
produce a velocity-depth profile. In this paper we present an alternate
approach to refraction inversion which consists of transforming the entire
data wave field into the slowness-depth domain. The process involves two

Tinear transformations: & slant stack followed by a depth migration.

Examples of the processing of refraction wave fields by slant stacking
were presented by McMechan and Ottolini (1980), Stoffa and Buhl (1979) and
Phinney et al. (1980). The result of this transformation is & wave field in
the ray parameter-time intercept (p-r) plane. The image that forms in the p-r
plane is the "tau" curve (cf. Bessonova et al, 1976), required for Wiechert-
Herglotz inversion. The reverse of this process was previously used by Chap-

man (1978) to generate synthetic seismograms from a p-r curve.

Recently, Garmany et al. (1979) showed that the inversion of a tau curve
can be expressed in linear form if the integration is performed along lines of
constant p. In this paper we employ a migration method to 1linearly transform
from the p-+ domain directiy into the slowness-depth domain. Since both slant
stacking and migration transform the entire wave field, neither the traveltime
curve nor the tau curve needs to be picked. Instead, picking is delayed until
the last step when the slowness-depth model is extracted directly from the
migrated wave field. The wave-field transformation approach to inversion has
the advantage that all the data contribute to the final 4image; there 1s no
subjective selection of data (e.g. via traveltime picking) as is dinvelved 1in
previous methods. In theory, since both migration and slant stacking are
reversible transformations, this approach could potentially be used to gen-

erate synthetic refraction gathers from the p-z plane.

The migration part of this technique 1is iterative because it is necessary
ta specify a velocity function. Convergence 1s achieved when the extracted
velocity function is the same as that input to the migration. In the examples

we have tested, convergence was obtained in less than five iterations.

In this paper we present the theory for the inversion of refraction pro-

files by double transformation of the data wave field. The method is
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illustrated with several synthetic examples and with a line of refraction data

recorded in the Imperial Valley, California.

Theory

The data recorded in a typical refraction experiment is in the format of
a common shot gather. Making the assumption that velocity varies only with
depth, 1t 1s equivalent to treat such data as a common mid-point gather. We
shall wuse the symbol t for traveltime and h for half offset in a common mid-
point coordinate system. The inversion of an observed refraction wave field
in these coordinates +involves two linear transformations: a slant stack and a

depth migration. Each of these will now be considered 1in turn.

A slant stack is a linear operation that transforms a wave field 1in the
t-h domain 1into a wave field in the p-r domain. Here, p the 1is ray parameter
(horizontal slowness), and ¢ is the vertical component of t [t projected to
zero offset along a line of slope p through the point (t.2h)]. Slant stacking
of refraction profiles has been discussed in detail by McMechan and Ottolini

(1980) so only a brief summary is given here.

Slant stacking can be performed in either the time or frequency domain;
however, 1in the time domain, variable trace spacing is easier to handle. A
slant-stacked wave field 1s produced from a common shot gather by (Gel’fand et
al., 1966; Chapman, 1978; McMechan and Ottolini, 1980):

+00
S(r, p) = F P{r + 2ph, h) dh (1)

~ 00
where P is the observed (seismogram) wave field and S is the transformed (p-r)

wave field. Equation (1) can be cast in the frequency domain by using the

Fourier central slice theorem

S(w, p) = Plw, -2wp) (2)

In other words, the two-dimensional Faourier transform of P evaluated along the

slice -2wp 1is the Fourier transform with respect to time of 1ts projection
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FIG. 1. The first transformation. The upper (a) half of this figure
contains a synthetic refraction profile plotted in reduced time format.
The reduction velocity 1s 3.7 km/s. These data are transformed by slant
stacking into .the plane wave decomposition shown in the lower (b) half
of the figure. This transformation is the first half of the process of
inversion of the data wavefield. The result of migrating this slant
stacked wavefield (b) 1is shown in Figure 2.
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S{r,p). For a more detailed presentation of these concepts see Bracewell
(1956) and Bracewell and Riddle (1967).

The main result of slant stacking 1s that the observed wave field s
decomposed into plane wave (fixed p) components, each of which can be migrated
separately. Figure la contains an example of a synthetic common shot gather,
and 1lb is the corresponding slant stack. The finite aperture of the dataset
and spatial aliasing both contribute to artifacts in the slant stack. Rela-
tively dense sampling of the offset coordinate 1s required to produce a rea-
sonable image in the p-+ domain (cf. McMechan and Ottolini, 1980). Also,
coherency of source signatures is required if multiple shots are involved in

the field survey.

The second transformation in this technigue is a depth migration of the
slant-stacked wave field. Migration can be considered in two parts: a downward
cohntinuation of the wave field followed by the application of an imaging prin-
ciple. When velocity varies only with depth [v = v(z)], the downward continua-
tion of the wave field observed at the surface (z = 0) to any desired depth
(z) can be implemented by a phase rotation 1n the fregquency domain (cf. Claer-
bout, 1976; Gazdag, 1378):

1/2
2z 2 k:
Plw.k,_,2) = P(w.kh,O) exp| -12 J LA e

0 [vi(z)

dz (3)

where w is the temporal frequency and k, is the horizontal wavenumber (the

h
dual of h). Equation (3) is an approximate solution to the wave eguation

a2 a2 w2
2t 2ot
9z 9 h v (z)

P(w,h,z) = 0 (4)

The solution 1s approximate because amplitude terms depending on the 1loga-
rithmic gradient of the velocity have been neglected. However, the traveltime
aspects of the solution are correct. The first minus sign in equation (3)

indicates that we are imaging upcoming waves.
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To convert equation (3) into slowness form, substitute -2wp for k

h:
P(w.-20p,2) = Plw,-20p,0) e F&:P,2) (5)
where
z 3
Ww.p.2) = 20f [v”z(z) - p2] P2 (6)
0

Using relation {2). equation (5) may be rewritten in terms of slant-stacked

wave fields:

-iWw,p,2)

S{w,p,2) = S(w,p,0)e (7)
The inverse Fourier transform of equation (7) is
S(r.p,2z) = S S(w,p,0) e_ﬂ'(“’p'z) e'1"”dw (8)

With equation (8), the surface (z=0) slant stack can be extrapolated
(downward continued) to all depths. One could think of using this equation to
f111 out the entire ¢-p-z space with data extrapolated from the surface. How-
ever, this is not necesary because the slowness image we seek lies on a plane
in the r-p-z space specified by the imaging condition. The desired image is
that which contains the bottoming points of all the plane wave components.
The plane which images this trajectory 1s specified by the condition + = 0O
because we wish to downward continue each p to the depth at which the
corresponding ray bottoms. At that depth, p of the ray equals the true slow-
ness (v-l) of the medium for refracttions and postcritical reflections. Pre-
critical reflections image 1n a trajectory that splits off from the main slow-
ness 1image at the critical reflection point. Setting # = 0 in equation (8)

yields the desired result:

S(0,p,2) = JS(w,p,0) e H@P.2)y (9)
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Implementation of equation (9) 1s straightforward. Each plane wave com-
ponent (each p) can be migrated separately since p enters equation (9) as a
parameter. A computer program which realizes (9) consists basically of three
nested 1loops, an outer one over p, then one over z, and an inner one over w.
One minor probiem that occurs in the application of equation (9) 1s that ¥ has
a branch cut. We remedied this by altering the definition of ¥ to be

4

Yw,p.2) = 20 J V_Z(Z) - Pz :
0

“dz

This stops the migration from attenuating the wave field below depths where p
is greater than v-l. The application of equation (9) produces an image in a
wave field in p-z space. The image trajectory 1s composed of wavelets whose
shapes are each defined by the phase shift associated with the reflection
coefficient at each z. A refracied ray can be treated as having an effective

reflection coefficient of -i sgn(w) (Chapman, 1978).

Figure 2a shows the p-z wave field obtained by migrating the p-r wave
field 1in figure 1b using the v(z) function (the solid line) superimposed on
figure 2a. This v(z) function used for migration is the same as that used to
generate the synthetic seismograms (figure la). The migrated wave field 1n
figure 2a therefore images the corresponding v(z) function exactly. The vary-
ing offset between the input v(z) function and the image is due to the fact
that there are phase shifts related to reflection coefficients which are not
yet taken 1into account. Accurate location of the image trajectory i1s dis-

cussed below.

The object of inversion is to find the v(z) [or, equivalently, 1in the
present formulation, the v-l(z)] function. However, the migration step
requires a velocity-depth function. Thus, obtaining a solution is necessarily
an iterative process. Convergence 1is presumably to a unique model because
there are no artificial constraints on the convergence path; the dataset
itself contains and provides the solution. The convergence criterion is that
the migrated wave field images the same v-l(z) function that was input to the
migration, and this state can be detected by comparing the p-z wave fields at

successive iterations.
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FIG. 2. The second transformation. The upper (a) half of this figure
contains the result of wmigration of the slant stacked wavefield in Fig-
ure l1b with the the correct velocity-depth function (the solid 11ne).
The Tlower (b) half of this figure contains the same wavefield as the
upper, but with a phase retardation of 5x/4. A1l the migrated wave-
fields in the vremainder of this paper are presented with this phase
shift applied.
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Synthetic Examples

It is possiblie to implement wave field inversion in an dinteractive mode
in which the slowness function extracted from the migrated wave field at each
step is used as the migration velocity for the next iteration. In this sec-
tion we present a detailed example of inversion in an interactive mode. An
example of automated convergence is included but the production of a totally
automatic inversion scheme that is able to adapt to & variety of conditions is

far beyond the scope of this paper.

The most important aspect of inversion by wave-field 1imaging is the
determination of the 1location of the desired slowness trajectory in the
migrated (p-z) wave field. In figure 2a, which illustrates the result of
migration with the correct v(z) function, it 1s clear that the relationship
between the image in the wave field and the corresponding slowness trajectory
(the solid 1line) s not trivial. Fortunately, this relationship can be
predicted, and as we shall show below, the migration 1tself has certain self-
stabilizing feedback properties which enable a velocity profile to be accu-
rately estimated from the use of any arbitrary criterion for Tlocating the

slowness trajectory, provided that it is consistently applied.

In figure 2a it can be seen that the optimal slowness trajectory is near,
but not coincident with, the maximum amplitude locus in the migrated wave
field. Part of the reason for this 1s that the p-z wave field images reflec-
tion coefficients, and each of these contains a phase shift which depends on
the angle of incidence and the velocity gradient at the ray bottoming point.
Specifically, if one assigns zero shift to refraction branches and precritical
reflections, then wide angle reflections have phase shifts which progress from
#/2 at the critical reflection to =« at large offsets, and any ray which
touches an internal caustic receives an additional #/2 shift. The Jlatter
occurs, for example, to rays which are refracted in a region of sufficiently
high velocity gradient that a triplication 1s produced 1in the traveltime
curve. The existence of these phase shifts suggests that better convergence
could be obtained by identifying those p ranges containing particular types of
arrivals and applying appropriate phase shifts. This identification could be
made in the p-r plane since the radii of curvature of refraction and reflec-

tion p-+ 1loci have opposite signs (cf. Figure 1b). Alternatively, an
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algorithm which 1s independent of phase shift could be sought.

We refrain from making progressive phase shifts as a function of p in the
p-r wave field, as described above, because this requires one to make a
specific interpretation which may bias the migration results. Instead, we have
shifted the phase of the entire migrated wave field (after migration) by 5«/4.
The resuit, for the wave field in figure 2a, is shown in figure 2b. This phase
shift consists of three contributions. First, there is a x/2 shift associated
with the requirement that the far-field radiation condition be satisfied (cf.
Chapman, 1978). Then, there is a x/4 shift due to the fact that we are deal-
ing with a two-dimensional representation of propagation in three dimensions
{Chapman, 1978). These two shifts are exact for all p values. The final
shift of #/2 is the average associated with the range of reflection coeffi-
cients expected for the various arrivals {(refractions and reflections) in a

typical refraction profile.

With the net phase shift of 5x/4 the locus containing the maximum posi-
tive amplitudes (or the first significant pulse when considering real data) in
a migrated wave field should be everywhere within #/2 of the correct slowness
locus. Using this modified form of the migrated wave fields, 1t was found to
be straightforward to obtain convergence to the neighborhood of the correct
model by wusing a very simple criterion for determining the approximate loca-
tion of the slowness trajectory at each iteration. The exact phase shift
applied is not critical since it does not enter directly inte the end product.
It simply alters the criterion for locating the optimal slowness trajectory in

the p-z wave field.

Migration is a stable operation, even with highly erratic velocity-depth
input functions. It does not matter if slowness trajectories are incorrectly
located in intermediate 1iterations; these effects are not cumulative from
iteration to 1teration because migration at each step is always of the origi-
nal slant-stacked wave field. Also, it does not matter if the criterion used
to find the slowness trajectory changes from one intermediate iteration to the
next. In fact we found that, when picking trajectories by hand, the picking
criterion evolved from iteration +to iteration, and different criteria were
used over different p ranges in the attempt to attain convergence. A1l of this

is expected and is a direct consequence of the various phase shifts associated
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with different types of arrivals as described above. None of this evolutionary
process enters or biases the final solution provided that the identical pick-
ing criteria are used on the two successive migrated wave fields used to iden-

tify the condition of convergence.

The stant-stacked wave field in figure lb was chosen to {llustrate the
convergence of migration. This example was done in an interactive format, in
which the slowness trajectory at each iteration was extracted by hand using
the criterion of the maximum positive amplitude at each p. The results are
shown in figure 3. Beyond iterations 4 and 5 (figures 3c and 3d), the solu-
tion did not converge further, but oscillated between the two positions
represented by iterations 4 and 5. This oscillation indicates a consistent
bias associated with the criterion of maximum positive amplitude used for
picking the slowness locus. This oscillation 1s a useful behavior and will be
discussed below. It 1is encouraging that such a simple criterion produces a
result that is close to and exhibits the same general shape as the desired
curve. In fact, for many practical purposes, this level of convergence { < 2%

error in velocity when averaged over the profile) 1s already adequate.

In this section we have demonstrated the wave field inversion of refrac-
tion data as 1impliemented in a simple interactive mode, and we have shown that
a good estimate of velocity variation with depth is obtained. The solution
could presumably be made as accurate as desired since, in the process of model
perturbation, the correct phase shifts could begin to be included to refine
the differences between successive iterations. Another useful observation is
evident in figure 2a. The existence of precritical reflections (the extension
of the 1image through lower slowness values from the critical reflections at
the "knees" of the image) indicates the presence of a significant velocity
contrast. The wuse of such additional information would produce better esti-
mates of appropriate slowness trajectories. Additionally, where a true reflec-
tion exists, the associated progressive phase shifts are evident in the
migrated wave field (cf. figures 2a and 2b)y. Another subjective aid is
inherent in the level of focussing of the slowness image in the migrated wave
Field. The image becomes better focussed as the correct velocity estimate 1is
approached. The reason that amplitude constraints (e.g. the increased ampli-
tude associated with a critical reflection) enter the solution only in a sub-

jective way 1s that the present form of wave-field inversion 1s still based on
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FIG. 3(a,b). Convergence by iteration 1n an interactive mode. The wave-
field being migrated 1is the plane wave decomposition of the synthetic
data shown in Figure 1b. Figure 3a contains the starting v(z) model, a
constant wvelocity of 2.6 km/s at all depths (see the solid line), and
the resultant migrated wavefield. The solid 1ine in (b) 1s the slowness
trajectory which was extracted by hand from the wavefield in (a).
Migration with this slowness function produced the wavefield in (b). The
later stages of this inversion are shown in Figures 3c to 3f.
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shown in (d). The final results of the inversion are shown in Figures 3e
and 3f.
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migrating the slant stack wavefield in Figure lb with this function.
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integral constraints (in the form of traveltimes) on the velocity-depth func-
tion. Amplitude information 1s an expression of the behavior of velocity gra-
dients and so provides derijvative constraints. In order to make use of such
information the data must be recorded in such a way as to be able to recover

true amplitudes.

The example above illustrates one approach to inversion, that of finding
a model which 1s 1n some sense a single best Fit curve to the data. The
uncertainty in such a model is indicated in the present scheme by the width of
the p-z image, and is directly derived from the freguency content and the time

resolution in the original data.

Another approach to inversion concentrates on determining the envelope of
all possible models that are consistent with a given data set {cf. McMechan
and Wiggins, 1972; Bessonova et al., 1974, 1976). 1In wave-field inversion an
explicit envelope can be determined by using a property of the migration algo-
rithm. If a migration is performed with a velocity estimate that is too high
at every depth, it will indicate depths that are everywhere too great. Con-
versely, if the migration velocity is consistently too low, consistently shal-
low depths are produced. We have also seen that a consistent bias produces
convergence to two pseudo-stable states. A property of these states is that
they are mutually inverse (i.e. migrating with either of the corresponding
velocity functions produces the other). This {1dea has a number of implica-
tions. First, such a pair of mutually inverse functions constitute an
envelope since one is everywhere too deep and the other 1is everywhere too
shallow. Second, it implies that one need not expend effort on determining
sophisticated criteria for locating the slowness locus when envelopes are the
primary desired result (all that 1s required 1is any picking criterion that is
consistently biased). Third, a good estimate of the desired v(z) function can
be obtained simply by averaging those of the two states. (An example of this
was already presented above.) Finally, the potenttial now exists for complete
inversion by a computer program since a simple criterion is sufficient and
produces both an envelope and a reasonably accurate estimate of the velocity

profile.

The interactive mode is likely to be the most viable form for practical

application since it can avoid, through the introduction of human intuition
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and experience, most of the potential problems in picking the slowness trajec-
tory from the migrated wave field. However, for certain datasets, it will be
possible to do an tnversion in a completely automated mode. figure 4 contains
an example of the result of an automated 1nversion. The solid velocity-depth
profile in figure 4a was used to generate a synthetic refraction profile which
was then slant-stacked. This p-r wave field was then iteratively migrated
using a constant veloctity of 2.6 km/s as the starting model. The picking cri-
terion for finding a slowness locus was the maximum positive amplitude at each
p. The velocity-depth functions produced by the first three iterations are
shown in figure 4a as the dashed lines. Both iterations 2 and 3 are every-
where within 0.2 km/s of the correct solution. As a final estimate, the
results of 1terations 2 and 3 were averaged and a migration was done with this
slowness function. The migrated wave field of this last iteration is shown in
figure 4b. The solid line superimposed in figure 4b is the slowness function

used for this iteration.

figure 4b also illustrates the effect of the failure of +the algorithm
used to find the slowness trajectory that would compensate for the varying
phase shifts on different arrival branches. Through the migration algorithm,
an uncompensated phase shift at some z (which in effect produces a shifted
slowness estimate) leads to an offset in z for all greater values of z. An
error in picking at shallow z will be present at all greater 2, and subsequent

errors are cumulative.

Certain types of data, such as typical marine profiles and the Imperial
Valley data presented below, contain prominent multiple reflections. Since
these arrivals often mask primary arrivals their removal is the topic of much
research. The transformations discussed here may be applied to this problem.
figure 5a contains the plane wave decomposition of a synthetic data profile
consisting of both primary arrival branches and their First free-surface mul-
tiple branches. In the p-r plane, the energy in the multiple is separated from
the primary energy since, for each p, it plots at twice the ¢ of the primary.
Similarly, in the migrated wave field 1n figure 5b, the primary and wultiple
images are separated. Thus, multiple removal may theoretically be performed
by windowing the slant stack or migrated wave field to remove the multiple
energy and then transforming back into the traveltime-offset domain to produce

@ multiple-free profile.
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It should be noted that this approach to multiple removal 1s also valid
for data coilected over structures other than flat layers. The transformations
themselves do not contain any restricting assumptions about the origin of the
data (slant stacking does not involve any velocity assumptions, and even
migration at a grossly incorrect velocity would stil1l separate primaries and
muitiples). There are, however, sti111 problems where a precritical reflection
branch of a multiple crosses a primary branch. An alternate approach to multi-
ples is to attempt to utilize the information present in them. We leave migra-

tion of multiples for future consideration.

One additional advantage that wave-field inversion possesses is that low
velocity =zones require no special treatment. The traveltime shadow zone asso-
ciated with a low velocity zone (1n the t-h domain) becomes transformed into a
Jump in £ at constant p in the p-+ domain and a gap in z at constant p in the

p-z domain.

Finally, it is of theoretical interest to note that we have empirically
shown that there is a direct correspondence between Wiechert-Herglotz inver-
sion and migration. We expect that an asymptotic or stationary phase form of
the migration equation (to delete the w-dependence) can formally be shown to
be equivalent to the Wiechert-Herglotz integral. Alsc, these cancepts are
expected to be applicable to the inversion of surface waves as well as body
waves since 1t 1s possible, with certain assumptions, to invert a dispersion
curve with the Wiechert-Herglotz integral (Takahashi, 1955; Nolet and Kennett,

1978). These topics are the subjects of current investigation.

Application to Recordsd Data

In order to evaluate the applicability of wave-field inversion to actual
field data, a digitized refraction profile of high spatial density was
obtained from the United States Geological Survey (USGS). These data., which
are presented in figure 6a, were recorded 1in the Imperial Valley of southern

California in 1979.

The analysis of the Imperial Valley data followed closely the interactive
procedure outlined above in the analysis of the synthetic data of figure la.

The data were slant-stacked to produce the p-r wave field shown in figure 6b.
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FIG. 6(c,d). The result of inversion by wavefield transformation of the
data 1in Figure 6a. The two dashed lines in (c) are the slowness trajec-
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(by detailed ray tracing) of a reversed refraction profile near the 1ine
along which the data in Figure 6a were recorded. The lower (d) part of
this figure illustrates the relationship between the slowness locus (the
solid line) and the migrated wavefield at convergence. The 1image
labeled M in (d) corresponds to the first multiple (PP).
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At each iteration, the slowness trajectory was extracted by hand from the
migrated wave field. Convergence was obtained in four iterations. In figure
6c, the velocity-depth profiles corresponding to the second and the final (the
fourth) 1terations, are shown. Also in figure 6¢ 1s the velecity profile
obtained independently .by W. Mooney of the USGS from a detailed ray tracing
analysis of an earlier reversed refraction line in the same area. This previ-
ous 1ine was approximately parallel to the one analysed here; the shot point
for the later profile also corresponded nearly exactly to the previous shot
point. Thus, it is reasonable to make a general comparison of the results of

the two studies as presented in figure 6c.

Figure 6d contains the slowness trajectory extracted from the migrated
wave field of the fourth iteration. This 1ine is superimposed upon the wave
field obtained by migrating with 1t to illustrate the convergence condition.

The slowness locus 1is particularly clear 1in this wave field.

There are some features of this Imperial Valley example which 1llustrate
points made in the theoretical discussion above. For example, the data (figure
6a) contain two regions of decreased resolution in the first arrival branch,
one between 7 and 3 km offset where there is a decrease in amplitude, and one
between 13 and 15 km offset where there is an apparent increase in the noise
level. These two regions can be seen in transformed form 1in both the slant-
stacked and migrated wave fields where they indicate an increased local uncer-
tainty 1in ¢ and 2z respectively. From the width of the slowness image, the
depth resolution 1is estimated to be of the order of 0.1 km on the average,
with better resolution at those depths assoctated with clear arrivalis in the
data and worse at those depths associated with noisy and 1less coherent
arrivals. The prominent free-surface multiple PP, which can be seen in the
data, is also transformed into the p-+ and p-z domains as predicted in figure
5.

During the tnversion of the recorded data the focussing observed with the
synthetic data was very noticeable. As the correct velocity profile was
approached, the sharpness of focus of the slowness trajectory approached that

seen in the slant-stacked wave field.

In comparing figures 6b and 6d, there are some p-r 1loci which seem to

migrate to horizontal lines. These are located near 1.5 km depth and may be
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precritical reflections from small velocity contrasts, but we see no evidence

for any large velocity discontinuities in this profile.

In this section the inversion of refraction data by wave-field transfor-
mations has been demonstrated by the processing of a real dataset from the
Imperial Valley, California. These preliminary results encourage further

application and development of the method.

Conclusions

In this paper we have presented an alternate method for inversion of spa-
tially dense refraction data that is based on the technique of wave equation
migration. The main advantage of the method is that the entire wave field is
present throughout the inversion and the desired feature (the velocity-depth
curve) is extracted directly from its image in the migrated wave field. This
eliminates the subjective bias which can occur when traveltime or tau curves
are picked. The method is robust and is self-consistent in the sense that a
consistent bias 1in extracting the image w11l produce convergence to a bistable
state which envelopes the optimal solution. The depth resolution is indicated
by the width of the p-z image and is directly derived from the frequency con-
tent and the time resolutionh in the original data. The method has been used,
apparently successfully, to invert a dataset recorded in the Imperial Valley,

California.
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