SYNTHETIC EXAMPLES OF PRE-STACK MIGRATION

Jeff Thorson

Introduction

The concept of migration before stack by means of the Double-Sguare-Root
(DSR) equation is well known to the readers of the reports of the Stanford
Exploration Project. Using the DSR equation to perform migration before stack,
or “shot-geophone" migration, can be seen to be equivalent to a simultaneous
downward continuation of common-shot gathers and common-geophone gathers. The
purpose of this paper 1is not a full exposition of the DSR equation -- for
this, refer to Claerbout (SEP-15, p.73) and Clayton (SEP-14, p.21) for an
analysis of the equation and the physical interpretation in terms of downward
continuation. 1Instead, this paper discusses the practical implementation of
the DSR equation in perfarming pre-stack migration, summarizing the important

concepts along the way.

Concepts

Shot-geophone migration is the procedure which operates on an entire set
of field data -- all shot gathers of a single line -- to produce a correctly
imaged section. Now the "field data" may be organized into a three-dimensional
dataset, indexed by shot coordinate s, geophone coordinate g, and time sample
t. Indicate the three-dimensional wave field recorded on the surface (a flat
datum 2z=0) as u(s.g,t,z=0). The prospect of working with the entire dataset
of a seismic experiment does not seem particularly fnviting. However, the

dimensionality of the migration probliem may be reduced by a factor of one by



working in the time-frequency domain. If each frequency sample is operated on
separately, data organization 1s simpler and storage requirements are more
manageable, especially on a minicomputer system such as the one that produced
the models in this paper. The amount of computation required for the migra-
tion to run to completion is net necessarily less 1in the frequency domain than
in the time domain, but computation time may be shortened by being able to

dispense with data transposes and disk transfers required in the time domain.

The Double-Square-Root equation in the frequency domain (Claerbout, 1978)

is
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where

(a) u(s,g,v0,z=0) are the given initial values.

(b) The plus or minus sign is set according to whether one wants
to propagate forward or backward in time.

(¢) The velocity v can vary arbitrarily in the horizontal (s,g)

or vertical (z) directions.

Now equation (1), along with the initial values wu(s,g,w,z=0), can gen-
erate the three-dimensional wave field u(s,qg,w,z) in which w is held constant.
A simple physical picture can be gained if equation (1) is solved by split-

ting: that is, alternatively applying the equations
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to continue u downward in z by steps of Az. These eyuations are identical to

the regular one-way operators of the scalar wave equation. Equation (2)



represents the downward continuation of a common-geophone gather, and equation
(3) represents the continuation of a common-shot gather. This is the familiar
picture given abave of achieving migration by alternately continuing the shot

and receiver fields.

Without boundaries, the DSR equation is separable: one could propagate

the shots down to the full depth z with (2), then subsequently contihue the

geophone field down with equation (3). 1In either case -- splitting or separa-
tion -- the solution would be the same. However, with an arbitrarily shaped
boundary 1in the shot-geophone plane, (1) s not necessarily separable. This

may have an effect on how well the migration behaves with certain boundary

conditions -- in particular, absorbing boundary conditions.

The imaging condition for pre-stack migration is the same as that for
normal zero-offset migration: t = 0. Any downward-continued geophones that
receive scattered energy at zero time must be coincident with the scatterer;
likewise the downward-continued source illuminating the scatterer must be at
the scatterer’s location. The imaged wave field u{(s=g,t=0,z) is the sum over

frequency of the separately propagated fields:

u(s,g,t=0,2) = 2 u(s,g,w,2) (4)
W

In addition, ail the coherent energy from reflection events 1s expected to
concentrate on the zere-offset section, where shot and geophone are coin-
cident. This presents' the interesting possibility that non-focusing noise wmay

be discriminated against in shot-geophone migration.

The imaging conditions s = g and t = 0 reveal that shot-geophone migra-
tion 1is a combination of the operations of migration and stacking. Also this
particutlar form of the DSR equation produces a migrated depth section, in con-

trast to a migrated time section.

There 1is one more important point concerning 1maging. To realize the
correct dimaging of the data, the correct velocity function must be supplied.
No implicit velocity estimates are made in this procedure, and an incorrectly
determined velocity will either underfocus the data or overfocus it. Examples

of migrations performed with differing velocity functions are shown later.



Algorithms

The algorithms for modeling and migrating the shot-geophone experiment
each comprise two major functions: propagation and imaging. Given a velocity
model and an arbitrary scattering model, the modeling aigorithm generates a
synthetic set of common-shot gathers (or, common-geophone gathers). The
“imaging"” principle in modeling is to feed the scatterers into the wave field
at zero time and 2zero offset as the wave field is propagated upward to the
surface z=0. The imaging principle of migration is the opposite: extract the
wave field at zero time and zero offset as the wave field is propagated down-
ward. The only difference in the propagation sections of the algorithms is a
change 1in sign of the frequency w. Modeling projects the wave field forward
in time while migration projects 1t backward in time. Other than the change

in sign, the propagation operators employed are identical in the two cases.

Migration ---

Input: u{s,g,w) at z = 0,

v(x,z) velocity model, where x = s or g.

Output: Various outputs are possible,
{(a) u(s.g.m.zo) for some depth Zg-
(b} wu(s.g,t=0,z) all offsets migrated,
(¢) u(s=g,t=0,2z) zero-offset migrated depth section.
Read in v{x,z)
Zero out scattering field s(x,z)
For each frequency w,
Read in shot-geophone plane u(s,g,w,z=0)
For each z level,
Propagate:
Downward continue common-shot gathers by Az
Downward continue common-geophone gathers by Az

Image:

. Add u(s=g,w,z) to s(x.,z)

Write out s{(x,z). This represents u{s=q,t=0,z)



Modeling ---

Input: wv(x,z) velocity field, where x = s or g

s(x,z) scattering field (the reflectors)

Output: u(s,g,w,z=0)

Read in v(x,2)

Read in s(x,z)

For each freguency w,

Zero out u(s,g,w,z) at depth z = maximum
For each z level,

Image:

Add s(x,z) to the diagonal u(s=g,w,z)
Propagate:

Upward continue common-shot gathers by Az

Upward continue common-geophone gathers by Az

hamememtee:

Save u(s,g,w,z=0) at the surface

For the examples that follow, all floating point arithmetic was done in
an array processor controlled by our host machine. A basic requirement of
this algorithm is that the entire shot-geophone field for a single freguency
be stared in the memory of the array processor. In this way, repeated tran-
sposes of the shot-geophone plane are not necessary -- all common-shot traces
and common-geophone .traces are resident in the array processor and can be
operated on in situ. Additionally, 1t is convenient 1if the velocity and
scattering fields, v{(x,z) and s{x,z2), can likewise be held inside the array
processor, but this is not absolutely necessary. If they cannot be held, the
number of disk-to-array-processor transfers increases. In this case the number
of transfers needed 1is about 2%nwknz/iz, where nw is the number of frequen-
cies, nz 1is the number of depth steps, and 1z 1s the number of depth steps
that can be done contiguously before a disk transfer is required. The size of
each transfer is of course the number of complex values in the shot-geophone

plane for a single frequency.
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Operation Count:

The Tength of the downward-continuation operator is equal to the number of
traces in a gather. The total number of downward continuations performed is
nw * hz * nr % 2 where nw 1s again the number of frequencies, nz the number of
depth steps, and nr s the number of gathers. It should be noted that the

operation count is independent of the number of disk transfers required.

Operator:

The 45-degree approximation to equations (2), (3) was used as the downward-
continuation operator for shots and geophones. Dip filtering has been incor-
porated in order to remove artifacts that are present with the standard 45~
degree operator. For a description of the operator see Jacobs et al. (SEP-16,
p.8%8).

Data Preparation:

The migration algorithm requires that the input wave field be 1in the temporal
frequency domain. Therefore to prepare the data for shot-geophone migration,

the following steps must be taken:
(&) Fourier transfarm each field trace t to w.

(b) Transpose the dataset so that frequency is the slowest varying parameter.
The data is then aorganized into a series of shot-geophone planes indexed

by w.

(c¢) If the shot spacing happens to be different from the geophone spacing, or
for any irregular shooting geometry, the shot-geophone field must be
interpolated onto & regular grid where the shot interval is equal to the

geophone 1interval. This 1involves a two-dimensional interpolation.

Once these operations are made, they need not be repeated -- migrations with

various velocity models may start with the modified file.

Absorbing Boundaries:

In working on a finite grid 1n the spatial shot-geophone domain, it is
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important to suppress the unwanted reflections which are generated at the grid
boundary. Either a padded region must be added, which may dincrease storage
requirements to the point of rendering the migration impractical, or absorbing
boundary conditions must be employed. 1In the examples that follow, even with
"standard" absorbing boundaries built into the operator, there are still sub-
stantial reflections off the grid edges. This may be due to the fact that the
initial value probiem is no longer separable when a finite boundary 1s placed
around the shot-geaophone plane. Figure 1 shows the boundaries of the discrete
shot-geophone plane wused in the examples of this paper. The boundaries were
intentionally set so that the process of downward continuing shots would be
symmetrical with dowhward continuing geophones.‘ Two types of boundary are
seen on figure 1: edges that are parallel to an axis, and edges that are diag-
onal to. the axes. Now on the diagonal boundary it may happen that the two
boundary conditions applied at one peint {(one in the shot direction and one in
the geophone direction) are inconsistent with each other. For example, in
order to satisfy a zero-slope boundary condition in both the shot and geophone
directions, the wave field may have to be identically constant. Boundary con-
ditions could be designed that involve terms in s and g, but these conditions
together with equation (1) would make the problem inseparable. The 1ikely
answer is to use a split version of an absorbing boundary condition 1nvoiving

z, s, and g, in the same way that (2) with (3) is a splitting of equation {(1).

Examples of Shot-Geophone Migration

The common-shot bathers of the following examples were generated synthet-
ically with the modeling algorithm described above. These synthetic "field
experiments" were migrated in turn with various velocity models. It can be
seen that for all models, when the correct velocity is applied to the migra-
tion, a good imaged section wmatching the original reflectivity model is
obtained. This merely demonstrates that the algorithm is reversible. Even the
grid edge reflections are migrated in the proper way so that they "undo"
themselves and contribute to the imaged section. The problem of missing data
is not present in these synthetic examples as it is for real data. Neverthe-
less the examples show how sensitive the results of pre-stack migration may be

to the prescribed velocity function.
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FIG. 1. The discrete shot-geophone plane. This is the actual size of the
grid used in making the examples.

A1l of the examples were run with the following parameters:

ng = number of traces per gather = 48

nr = number of gathers (shot or geophone) = 64

nz = sample points 1in depth = 64

nt = sample points in time = 64

As = shot interval = group interval = 30 m

Az = depth 1nterval =15 m

At = time interval = 0.025 sec

Therefore, time sections are 1920 meters by 1.6 seconds and depth sec-
tions are 1920 meters by B60 meters vertical. Notice that the depth sections

are compressed in the horizontal direction by a factor of 2.

Model 1 -- Impulse Response in a Constant Velocity Medium

A single point scatterer lies 240 meters beneath the surface at the
center of the seismic line. The velocity used to generate the synthetic data

is a constant 2000 meters/second.
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FIG. 2. Common-shot gathers 0-31 for model 1, a point scatterer in a
constant-velocity medium. Gather 0, in the upper left corner, corresponds to
the shot directly over the scatterer. The higher-numbered gathers correspond
to the scatterer progressively shifted to the left with respect to the shot.
The scatterer 1ies at a depth of 240 meters. FEach gather is a time section.
The edge reflection is obvious in these figures. In figure 3, it takes on the
appearance of an event below the true scattered event.
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FIG. 2. Continued.
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FIG. 3. Common-offset sections 0-23 for model 1. Offset number 0 1s the
zero-offset section, which displays a hyperbolic response. Greater offsets ex-
hibit flattening on top of the moveout curve. Also present on the Ffar-offset
sections are events corresponding to the reflections off the diagonal boundary
aof figure 1. At the farthest offsets they merge into the real events as the
diagonal boundary is approached.
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FIG. 3. Continued.
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Fig. 2 -- Common-shot gathers generated by this model.
Fig. 3 -- Common-offset time sections generated by this model.

Fig. 4 -- Migrated zero-offset depth section using the correct velocity.

See the figure captions for details. The shape of the impulse response s 4&s
expected -- a hyperbela -- even out to far offsets. The unwanted edge reflec-
tions manifest themselves very plainly in figures 2 and 3, especially 1in the

far-offset sections of figure 3.
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FIG. 4. Migration of the data of figures 2 and 3. The horizontal axis is mid-
point x, vertical axis is depth z. Good resolution 1s obtained in the midpoint
direction. The edge reflections have collapsed back into the scatterer, and
so have contributed to the focusing effect. The original depth of the
scatterer is 240 meters, the depth to the bottom of the section is 860 meters.

Model 2 -- Flat Reflector Beneath a High-Velocity Wedge

A flat reflector (figure b5a) underlies a wedge of higher-velocity
material (figure 5b). The resulting synthetic dataset (figure 6) is not
surprising: a gradual puli-up in time toward the right as the rays encounter a
thicker pertion of higher-velocity material. There is no apparent curvature to
the reflector on the time sections -- it remains 1inear. This synthetic

dataset was migrated using two velocity functions. First, the original
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velocity function (figure 5b), and secaond, a constant velocity function of
2000 m/sec. The results are again what 1s to be expected: the correct velo-
city images the true reflector, while the constant velocity case results in an
image of an evenly dipping layer. The focusing in this second case is rather
good, so the misapplied velocity does not affect the quality of the 1image in

this case, but only the placement of the image.

Fig. 5 -- Reflectivity and velocity fields, model 2.
Fig. 6 -- Common-offset gathers of the synthetically generated data.
Fig. 7a -- Correctly migrated zero-offset section.
Fig. 7b -- Incorrectly migrated zero-offset section.
==X » X
4000 m/s
2000 m/s
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FIG. 5. (a) Reflectivity field for model 2. A flat reflector (i.e. a composi-
tion of point scatterers) 1lies at a depth of 720 meters. (b) The velocity
model. It 1s a wedge of 4000 m/sec material overlying 2000 m/sec material.
Observe that the velocity model is used purely for one-way propagation of the
wave field. It does not give rise to any reflected energy at the linear inter-
face between 4000 m/sec and 2000 m/sec.
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FIG. 6. Common-offset sections 0-11 for model 2. This figure displays the
first 12 offsets out of a total of 24 offset sections. Zeru offset is at upper
left. The primary effect of the high-velocity wedge 1s a uniformly increasing
pull-up of the reflector in time. There is no noticeable curvature to the
event. The events beneath the reflector are grid reflections off the diagonal
boundary of the shot-geophone plane.
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FIG. 7. Depth migration of the data of figure 6, using two different velocity
field inputs. (a) is by the correct velocity model (figure 5b) while (b) is by
an incorrect velocity model: the velocity is a mere constant 2000 m/sec. The
high-velocity wedge has produced an effective linear pull-up to the reflector
which a constant velocity function cannot correct for. Both figures (a) and
(b) are zero-offset depth sections.

Model 3 -- Dipping Bed in a Constant-lUelocity Material

The previous model invites a comparison to the case of a dipping bed
(figure 10a) 1in 2000 m/sec material. The constant-offset sections {(figure 8)
logk very similar to the constant-offset sections of model 2 (figure 6). In
fact, if a migration is made using the velocity field of model 2, that is, the
high velocity wedge over a lower velocity, one obtains an 1imaged reflector
whose dip has been removed. In this case, though, the dip of the reflector
happened to be real. This demonstrates an ambiguity between models 2 and 3:

two datasets are virtually identical for two different physical cases.

Fig. 8 -- Constant-offset time sections of model 3.

Fig. 9 -- Incorrectly migrated zero-offset depth section.
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FIG. 8. Common-offset sections 0-11 for model 3. Zero-offset is at upper
left. This figure should be compared to figure 6. There 1s virtually neo
difference in character between the datasets of model 2 and model 3.
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FIG. 9. The data of figure B was migrated using the wedge velocity model of
figure 5b. The result 1is no different from the correctly migrated section
(figure 7a) of the previous model.

Model 4 -- Dipping Bed Beneath a Low-lVelocity Channel

The reflectivity model used to generate this dataset is the same as that
for model 3 -- a dipping bed. But the velocity model now used has sharp
lateral discontinuities, so that the synthetic data (figures 11 and 12) now
appear somewhat complex. The migrated volume u(s,g.,t=0,z) using the correct
velocity function (figure 10b) is displayed in the form of common-offset sec-
tions and common-midpoint gathers (figures 13, 14). The correctly imaged sec-
tion, as expected, 11es on the zero-offset section. Three other velocity
functions were tried 1in migrating the synthetic model. For each case, the
zero-offset depth section and the fourth-offset depth section (corresponding
to an offset of 240 meters) is plotted. For the first trial velocity, the
channel of 1000 m/sec material i1s replaced with 2000 m/sec material (figure
15a). For the second, a smoothed averaged velocity model is tried (figure
16a). For the third, an average velocity function is tried that matches more
closely the true velocity -- one that has abrupt lateral discontinuities. Only
the third trial is able to migrate the data reasonably so that 1t focuses well

into a single event, though timing is off.
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Fig. 10a -- Reflectivity field for model 4.
Fig. 10b -- Velocity field for model 4.

Fig. 11 - -- Common-offset sections of the synthetically generated data.
Fig. 12 -- Common-midpoint gathers of the synthetic data.
Fig. 13 -- Common-offset sections of correctly migrated data.
Fig. 14 -- Common-midpoint gathers of correctly migrated data.
Fig. 15 -- Common-offset migrated sections using trial velocity 1.
Fig. 16 -- Common-offset migrated sections using trial velocity 2.
Fig. 17 -- Common-offset migrated sections using trial velocity 3.
X — X
1000 m/s
2000 m/s
Y 1
Z () z (4)
FIG. 10. (a) Reflectivity model used to generate model 4 -- a dipping bed.

(b) The velocity function used to generate model 4. It is an idealized low-
velocity trough with vertical sides. The depth to 2000 m/sec material 1s 140
meters on the side and 280 meters in the center of the model.

A measure of how well the migrated section has been 1maged 1s the ratio
of energy of a certain reflector on the zero-offset section to its energy on a
non-zero-offset section. The following tabie gives this ratio between offset
zero and offset four for each of the trial velocities in figures 15, 16, and
17, as well as that for the correctly migrated dataset (figure 13). The

correctly migrated set of course has the most effective imaging. The measure



24

of "energy" here is the maximum

offset section.

Trial velocity 1:
Trial velocity 2:
Trial velocity 3:

Correct velocity:

.097/.
.103/.
.129/.
.129/.

amplitude on

066
079
067
049

]

—

N =

.47
.30
.93
.63

the

reflector

in

the

common-
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FIG. 11. Common-offset secttons 0-23 for wmodel 4 ~- a dipping reflector

beneath a Tlow-velocity trough. Multiply the offset number by 60 to get the
offset in meters between shot and geophane for each section. The zero-offset
section {upper left) is understandable: the reflector is pulled down in time
by the Tower-velocity infi11 material. On the ends of the section the reflec-
tor is high, which corresponds to raypaths that miss the
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(FIG. 11. continued) low-velocity trough. On the large-offset sections an
event appears midway between the normal arrival and the pulied-daown arrivat,
and it corresponds to rays that travel through the trough region on the way
down and miss it on the way up, or vice-versa. The three levels do not overlap
significantly on the offset sections. They are alsoc readily apparent on the
common-midpoint gathers of figure 12. Time is the vertical axis on all sec-
tions.
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FIG. 12. Common-midpoint gathers 0-20 For model 4. See the caption for figure
11. The midpoint corresponding to the middle of the section is in the upper
left corner. Increasing midpoints indicate gathers progressively updip on the
reflector. Time is the vertical axis on all sections.
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FIG. 13. MIGRATED common-offset sections 0-11 from model 4. Zero offset is
in the wupper left. The correct velocity function was used in the migration.
The energy images correctly on the zero-offset section only. A1l sections are

time sections. In contrast, figure 14 is a common-midpoint display of the
same migrated set.
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FIG. 14. MIGRATED common-midpoint gathers 0-20 for model 4. See the caption
for figure 13. Overall energy has concentrated at the zero-offset section.
This example seems to indicate that focusing resolution of the dimage 1in the
midpoint direction is much greater than in the offset diraction.
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FIG. 15. The first trial velocity function used to migrate the dataset of
figures 11 and 12 1s simply the original velocity with the trough "filled 1n"
with 2000 m/sec material. This does a poor job in imaging the data. (a) is the
velocity model, (b) is the migrated zero-offset section and (¢) is the migrat-
ed constant-offset section corresponding to an offset of 240 meters. The three
events seen on figure 12 (due to the three possible types of raypaths through
the material) do not coalesce in the imaged section as they do for the correct
migration of figure 13. Sections (a), (b), (c) are in depth.

1inear velocity function
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FIG. 16. Second trial velocity. The velocity model (a) here is a smooth 1la-
terally varying velocity in the shallow half of the depth section. (b) is the
migrated zero-offset section while (c¢) 1s the migrated 320-meter constant-
offset section. Again, when data which 1is generated by a velocity field with
lateral discontinuities 1s migrated with a smooth laterally varying velocity,

the multiple events do not image together properly. Sections {a), {b), {(c) are
ail depth sections.
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FIG. 17. Third trial velocity. The vertical average velocity of this model
matches that of the true velocity field -- it has lateral discontinuities in
the right places. (a) 1s the velocity model, (b) is the migrated zero-offset
section while (c¢) is the migrated 320-meter constant-offset section. The re-
flector 1is 1imaged fairly well, except for an error in vertical position. All
sections in this figure are depth sections.

— X




J’W*”l

ar

Li: ,llH'_ l,_| L_|L_L_
: LIE%,%
: J L

ST

;
o¢

%ﬁﬁ




