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Abstract

Phase-shift techniques for modeling the one-way wave equation can be gen-
eralized to generate synthetic seismograms due to media with laterally varying
velocity. These synthetics will not have the dip dispersion associated with

finite-difference algorithms.

Introduction

Good synthetic seismograms are needed in the testing of migration pack-
ages. Synthetics for this purpose are often computer-generated by a modeling
algorithm whose accuracy is known to exceed that of +the migration routine.
Such wmodeling algorithms should be based on the one-way wave equation, since
1t 1s obvious that present-day migration programs do not correctly handle mui-
tiple reflections. Good behavior at high dip is also a necessity. Both these
constraints are satisfied by phase-shift algorithms when we treat of media
which are 1laterally dnvariant. Laterally changing media present a prablem

which can be solved by suitably generalizing these algorithms.

Phase-Shirt Methods

In z-variable media the phase-shift algorithm takes a wave field
U(kx,w,z+Az) and a source S(kx.w.z) and computes the wave field at depth z by

implementing & discrete form of the continuous equation



U(kx.m.z) = U(kx.u.z+Az) exp —1Az[{;TgTJ2—ki] + S(kx.u.z) (1)

where v(z) is half the acoustic velocity of the earth.

This method can be generalized by turning the wave-equation modeling
problem 1nto an eigenvalue problem. The eigenvaiues of the new probiem will

be the pz's of the phase shifts needed in wave equation approximation.

The first step in the derivation 1s to notice that the one-way wave equa-
tion 1is easily fooled. If we are pushing the wave field between depths z+A:z
and z and the velocity is independent of z within this region then the solu-
tion to the one-way wave equation will be 1independent of the velocity struc-
ture outside this narrow strip of earth. This allows us to take a Fourier

transform over z at every z-step.

Discretizing and taking transforms over x,z, and t we can change the wave

equation

1
axxu(kx,u,z) + azzu(kx,w,z) = 3 U(kx.w.z)
vix)
into the convoiutional equation
2,2 2 ~ 2.2
(Akxk +pz} U (p, ) = aaPF20 B(p Yy (p_.F) (2)

where Uk is the Fourier transform of the square of the slowness along the x-
axis at depth z. The transform variable pz is continuous while k and T are
integers which index discrete spatial (horizontal) and temporal wavenumbers,
respectively. If we introduce the summation convention of iensor notation

then equation (2) becomes
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Equation (3) is shorthand for a system of equations with an easy, though

trivial solution, i.e. Uk(pz.f) = 0. We will want & non-trivial nonzero set



of solutdions. The system of equations 1in (3) is not square so we need to
ditch some of the equations (or variables). There 1s probably 1ittle harm
done if the variables and equations corresponding to high spatial and temporal
frequencies are 1left out of the problem, so we will assume from now on that
this has been done. Under these conditions, system (3) will have a nontrivial
solution when pi is an eigenvalue of the matrix of coefficients that resides

there.

The wmatrix of our eigenvalue problem is banded and Hermitian so 1t has a
complete set of orthonormal eigenvectors with associated real eigenvalues.
Our matrix is almost certainly not positive definite since it is expected that
evanescent waves wi1ll have negative eigenvalues. This won’t bother us much.
Taking & hint from commonly used F-K technique we will just project the
evanescent energy out of the picture. Letting the integer \ subscript the
eigenvalues of the matrix in equation (3), denote the eigenvectors by ¢A(k.f).
With this convention the input wave field Uk(F) can be decomposed into a
1inear combination of the ¢k(k,F)'s. We have

NA
U (z+82.f) = Aflcx(f‘)ax(k.f) (4)
Nk * .
Ck(f) = kfluk(Z+AZ’F)¢x(k’f) (%)

where NX 1s the number of positive eigenvalues.

If by P we denote the projection operator which rids our wave field of
1ts evanescent energy and by G the operator of equation (3) then what we have
in equations (4) and (5) is a way of decomposing wave fields in terms of the
eigenvectors of GP. This operator product is positive semidefinite so it has
a square root. The square root has the same efgenvectors and 1ts eigenvalues
are simply the square roots of those of GP. We can use this information to
construct ka(z) in terms of the ¢x(k.f)'s. Taking @ hint from the phase-

shift method we propose the decomposition

NA
Uk(z,F) = XEICX(F)¢x(k,f) exp[-1Az[pz]x] + Sk(F) (6)



where the Cx(f)‘s are the same as those in equation (5) and the Sk(f) is a

sgurce term which models the reflection coefficients at depth z.

Conclusions

A method has been constructed which is able to correctly model much of
the behavior of solutions of the exact one-way wave equation. One problem
with this method is that 1t dumps all evanescent energy at every z-step, thus
losing much of the high-angle reflection seismogram as well. It might be pos-
sible to extend the phase-shift method still further by expanding the wave
field 1in terms of the eigenfunctions of G rather than of GP. One might guess

that the eigenfunctions of 61/2

are the same as the eigenfunctions of G and
that the eigenvalues of the square-root operator, which we denate by ”A’ are

given by

This sort of trick seems to work when the phase-shift method 1s applied in x-
invariant media (Thorson,J., SEP-16, p. 299-308).



