Chapter V

ATTENUATION DUE TO THERMAL RELAXATION
IN POROUS ROCKS

Thermal relaxation is & well-known mechanism for the absorption of elas-
tic energy 1in solids. Zener [1948] presents a review of its effects on the
anelasticity of metals. Savage [1965] and Armstrong [1979] have treated
seismic attenuation due to thermal relaxation 1in dry granular rocks. A
closely related effect is the energy conversion caused by stress-induced phase
transitions. Vaisnis [1968] has applied this mechanism to seismic absorption

in areas of the mantle containing partial melt.

In this paper we will extend the results of these authors. The frequency
dependence will be discussed in greater detail and the magnitude of the loss
will be estimated for several cases, such as porous rocks where the pore
volume is occupied by gases or 1iquids, or mixtures of both, with and without
phase transitions. Particularly large losses are predicted for rocks con-
taining mixtures of ‘liguid and gas at high pore pressures, water-saturated
rocks at high temperatures and rocks containing partial meit. Each of those

cases 1is of dinterest in the exploration for energy resources.

In the last few years it has been established that pore fluids play a
major role 1in determining seismic velocities [Nur and Simmons, 1969; Domenico,
1376]. It has also been discovered that even minute amounts of volatiles can
dramatically increase the absorption in rocks [Pandit and Tozer, 1970; Titt-
man et al., 1972; Tittman, 1878]. Winkler and Nur [1979] have investigated
the effects of a number of variables - including pore and confining pres-
sures, the degree of saturation, and the nature of +the pore fluid - on
attenuation for both shear and compressional modes of deformation. They found
that the introductien of small amounts of gas phases in water-saturated rocks
led to a 1large 1increase 1n the attenuation associated with compressional
deformations. We will investigate the role of thermal relaxation in these

abservations.

The magnitude of thermoelastic effects is closely related to the thermal

expansivity of the material. The thermal expansivity of gases is typically
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about an order of magnitude greater than the thermal expansivity of 1iquids,
which 1is about an order of magnitude greater than that of solids. Since ther-
mal relaxation is known as a mechanism responsible for significant absorption
in metals [Zener, 1948], it would not be surprising to find it playing some
role in the absorption 1in porous fiuid or gas-saturated rocks. In contrast to
previous 1investigations of thermal relaxation in rocks, which have considered

its effects on dry rocks, we will examine in detail the role of pore fluids.

Physical Principles of the Thermoeiastic Effect

It i1s known from elementary thermodynamics +that any material with a
nonzero thermal expansivity will be less compressible under adiabatic condi-
tions, when it is thermally isolated, than under isothermal conditions. Adia-
batic compression 1is accompahied by a temperature change, which depends on the
thermal and elastic properties of the matertal. Because for all wavelengths
and frequencies of interest in seismology the flow of heat from the peak to
the trough of a wave traveling 1in a homogenecus medium may be neglected
[Savage, 1965], wave propagation 1s controlled by the adiabatic properties of
the rock.

In contrast, in & heterogeneous medium such as a porous rock, we can
distinguish between two or three kinds of adiabatic responses. When a sudden
pressure change is applied to a material with hetercogeneous thermoelastic pro-
perties, each pore of grain responds adiabatically, producing a spatially
heterogeneous temperature change. This results 1in local heat flow from
regions of higher than average stress or greater than average thermal expan-
sivity to regions of lesser stress or expansivity. As the temperature differ-
ences relax, some additional strain takes place. The deformation may still be
considered adiabatic, now based on the average properties rather than on the
iocal microscopic properties. Furthermore, when more then two phases of the
same component, e.g. steam and water, are present, thermal equilibrium is not
a sufficient condition for thermodynamic equilibrium, as one of the phases may
have become unstable. Egquilibrium in response to a pressure increase 1implies
some mass transfer from the less dense phase to the denser phase, accompanied

by a release or absorption of the latent heat for the transformation.
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We will first derive an exact solution for the mechanical response of an
idealized heterogeneous medium, that is, & rock with a random distribution of
flat pores of uniform thickness. The result enables us to draw some conclu-
sions about the frequency dependence of the attenuation in rocks with more
complicated structures and about the relationships between the magnitude of
the absorption and the modulus defect. The modulus defect is defined as the
relative change in modulus between the high-frequency unrelaxed and the Tow-

frequency relaxed Timits.

An Exact Solution

The process of conversion of wave energy into heat may be described in
detail when the geometry of the inhomegeneity 1s known. For simple geometries
this may be done analytically. Here we consider the case of a flat inclusion
in an otherwise homogeneous medium. A random distribution of such inclusions

will show similar behavior when the {inclusions are uncorrelated.

The geometry is illustrated in figure 5.1. Notation and definitions of
the parameters we wil1 be using are given in table 5.1. An instantaneous
application of a small pressure change P impiies a proportional change in tem-

perature T by an amount

T = bPF (5.1)

throughout the rock. If T varies 1n space, flow of heat across finite tem-
perature gradients will take place, with a resulting increase in entropy and
an irreversible conversion of mechanical energy into heat. Spatial variations
in T can result either from inhomogeneities in P aor b, or both. In a dry rock
with an irregular distribution of pores and cracks, one might expect 1nhomo-
geneities 1in P to dominate since stress concentrations will be present at
grain boundaries and the edges of cracks. This case has been considered by
Savage [1965]. In fluid-saturated rocks the fluid will support much of the
compressional stress in the vicinity of flat cracks. Since the stress heating
coefficient b is +typically an order of magnitude greater for liquids than

solids, we might expect inhomogeneities in b to play a significant role here.



FIG. 5.1. Geometry of rock model used in diffusion solution.
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TABLE 5.1. Notation and definitions for thermal parameters.
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For the geometry 1in figure 5.1 both the material properties as well as
the strain e and the temperature depend only en y. For flat inclusions the
pressure is uniform. The heat flow will thus be described by the one-

dimensional diffusion equation, which has the form

a.
—

2
9T, p 4P (5.2)
3 2 dt

Y

=D

Q.

t

when the adiabatic heating effect is incluaged. Equation (5.2) may be used to
solve for the temperature when the diffusivity D is lpcally constant. At
interfaces, continuity of temperature and heat flow must also be satisfied.

Given the temperature, the strain e is obtained from

1
K

P+ a(T-T ) (5.3)

Thus, from a knowledge of the diffusivity, heating coefficient, and thermal
expansivity, we can determine the temperature and strain response to any

applied stress function, P(t).

wWhen the applied pressure is a sinusaidal function of time

P o= pelet (5.4)
o
Equation (5.2) becomes
2A
A
iwl = D o1 +  iwb (5.5)
3 2
Y
where
T-T
A
T = P 9 (5-6)

Similarly, equation (5.3) becomes
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S(w) = g+l (5.7)
where 3(w) is a complex, frequency-dependent compliance, e/P. When S{w) is

known the attenuation parameter Q@ 1s obtained from

= tan 8 ZImCS ()]

1 . -
q * RelS(w)] (5.8)

where 8§ is the phase angle between stress and strain. O°'Connell and Budiansky
[1978] discuss the relationship between this and various other definitions for

Q that have been used in the literature.

A general solution to (5.5) has the form

? = A,cos h L { for )% + A, exp|-L { fwr )i/2 + b (5.9)
1 d 1 2 #XP7y 2 '
where
2
d .
LA (5.10)
1
2
d .
. (5.11)
2 D2

Symmetry considerations imply that A2 = 0 for |y|] < d. The condition that T

be bounded for large y impiies that A1 = 0 for y > d. The solution may there-

fore be written as

- Y Y .
T = Alcos h[d (1uf1) ] + b1 ..... lyl < d (5.12)
T = A, expl-PL (ior )% + b Iyl > d (5.13)
» ; ) g e .

A1 and A2 are determined by imposing continuity of temperature and heat

flow at the interface. Continuity of temperature implies
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Y e 5 . -
Alcos h[(1wfl) ]A2 exp[ (waz) ] = b2 bl (5.14)
and continuity of heat flow:
hiAy L 5 i s 5 (5.0
- (1mfl) sin h[(1uf1) ] = - —E——~(1m12) exp[—(iufz) ] (5.15)

where h1 and h2 are the thermal conductivities. Solving (5.14) and (5.15) we

get:

b.-b
A, = 21 (5.16)
' cos h[(fwr )%] + El—[:l-]%en'n h[(iur )%]
1 h2 72 2
| h1 L8 ¥ sin h[(fufl)%]
Ay MR 7 (5.17)
21 2 exp[*(1mf2) ]

By subtracting the inftial adiabatic strain from the total strain given 1in
Equation (5.7), and integrating over y, we obtain the total displacement, U,
per unit of applied pressure caused by the relaxation of temperature differ-

ences.

u = T 2 - (5.18)
(1ufl)zcot h[(1wfl)z] + r(1url)
where r 1is given by
h, fr.1%
Y (519
22
Equation (5.18) may be rearranged to get
2
- (b.-b,)

U = szg 1 T2 (5.20)

1 L "
171 ('hn'l)zcot h[('lwrl)z] + r'('lm'l)2
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where use has been made of the relation
b = %L (5.21)
The Taylor-series expansion of the hyperbolic cotangent function implies
scot h(s) = 1+3—+2= ... (5.22)
It follows from equations (5.20) and (5.22) that the displacement U ranges

from

__ad 2 ‘
AU = Tooco (b,-b,) (5.23)

to zero as frequency goes from zero to infinity, and that the imaginary com-

ponent vanishes at both limits.

From our definition for Q, equation (5.8), it follows that when

Al << u0 (5.24)

where Uo is the initial displacement, the attenuation 1is approximately given
by

L ImU{w)

(5.25)
Q U0
The ratio
AM Al ;
- 5 (5.26)

is often referred to as the modulus defect. It follows from (5.8) that the
attenuation, as a function of frequency, may be obtained by multiplying the
imaginary part of the inverse of the denominator in equation (5.20) by the

modulus defect.
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Frequency dependence. Figure 5.2 shows the normalized attenuation M/QaM,
as a function of frequency, for three different values of r. One may approxi-
mate the response of a more complicated rock by adding the creep due to each
crack thickness; & result for three different crack thicknesses is shown in
figure 5.3.

Inspection of equations (5.20), (5.22) and (5.25) shows that the attenua-
tion 1s proportional to the square root of frequency at frequencies much less
than 1/1-1 and 1s dnversely proportional to the square root of frequency at
high freqguencies. Most previous work on linear attenuation mechanisms in
rocks [Vaisnis, 1968; Savage. 1966; White, 1975; Dutta and Ode, 19791 has
assumed that diffusion-controlled mechanisms could be treated as either a sin-
gie exponential decay {(relaxation time), or a limited distribution of relaxa-
tion times, referred to as absorption bands [Kanamori and Anderson, 1977; Min-
ster, 1978]. Figure 5.4 shows the curve from figure 5.2 for r = 1. For com-
parison a plot of the attenuation due to a single relaxation of the standard
1inear solid [Zener, 1948] 1s also shown. The comparison shows clearly that
the attenuation for this idealized rock model is spread out over a much
wider range of frequencies than is the attenuation due to a single relaxation
time, and the maximum attenuation 1s just about half the attenuation for the
standard linear solid model. The diffusion solution has the attenuation
decreasing with sgquare root of frequency, m%. away from the peak, while the
standard linear solid goes as frequency to the first power, . Strictly
speaking, it can therefore be concluded that an infinite distribution of stan-
dard 1inear solid elements would be required in order to describe the 1loss
caused by any mechanism controlled by diffusion, even in a rock where all the
inhomogeneities are of the same size and shape. An actual rock will of course
contain a wide range of sizes and shapes; consequently an even broader range

of relaxation times would be required to describe 1ts mechanical response.

Thermal parameters for different materials of interest in seismology are
1isted 1in table 5.2. A1l of the materials listed have diffusivities of the
order of 1 mmzls; this implies that inhomogeneities with dimensions on the
order of one millimeter will contribute most to the absorption of seismic
waves. As the characteristic time constants, v, and =

1 2’
the crack thickness squared, a relatively narrow distribution of pore sizes

are proportional to

will cause loss over a wide range of frequencies.
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FIG. 5.2. Normalized attenuation M/QAM, as a function of normalized fre-
quency wr.. Curves for three different values of the thermal-impedance

ratic r (5.19) are shown.
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FIG. 5.3. Normalized attenuation, as a function of frequency For a rack where
the pore space is equally divided between cracks with £l equal to 0.1, 1 and
10 seconds. The value of r is unity.
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FIG. 5.4. Comparison between the standard 1linear solid and the diffusion
sojution.
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Magnitude estimation. The problem of determining the loss caused by any
particular physical mechanism may be split into two parts, the estimation of
the modulus defect, and the frequency dependence. It 1s often possible to
estimate the wmodulus defect quite accurately, while a deterministic solution
for the frequency dependence requires a detailed knowledge of the distribu-
tion and dimensions of the inhomogeneities responsible for the less. In the
remaining sections of this paper reversible thermodynamics w11l be wused to
estimate the wmodulus defect. A rough estimate of the range of frequencies
involved may then be used to estimate the magnitude of the attenuation by a
superposition of several 1loss peaks, as in figure 5.3. An alternative is to
use the known general relationships between frequency dispersion and attenua-
tion. For example, the assumption of a frequency-independent Q [Kjartansson,
1979] implies that

Mw) e |27 :

ay [“’o] (5.27)
where

1 ,

g = tanCey) (5.28)

In the case where Q >> 1, this may be rewritten:

M{w)-Mo_)
0. . 22 . -
—M—(';:,T——- el 'In(WO) {5.29)

Thus a change in modulus when the attenuation is approximately independent of

frequency over six orders of magnitude 1s related to 1/Q by

AM .
N (5.30)

' ay 1
gl M ~ 8

This result could also have been derived from figure 5.3.
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The Magnitude of Thermoelastic Effects

In this section relations for the effective bulk modulus of rocks under
various conditions will be developed and used to estimate the magnitude of
loss due to thermoelastic effects. The high-frequency unrelaxed case 1s the
simplest, as it implies periods too short for any thermal interactions to take
place. Effects of porosity on the mechanical response of rocks have been
treated by many authors. This includes both treatments where the pore space is
assumed to be a distribution of elliptical 1inclusions or voids [Eshelby,
1957; Walsh, 1965; O0°'Connell and Budiansky, 19741, cracks of more general
shapes [Mavko and Nur, 1978], or voids Jleft between contacting spheres
[Gassmann, 1951b; Mindlin and Deresewich, 1953]. These treatments all have it
in common that the effective rock properties are derived from a detailed
knowledge of the pore geometry as well as the intrinsic rock properties. Many
of the models feature a strong dependence on poorly constrained parameters,

for example aspect ratios.

In the present context we are interested in how the effective properties
change as the response of the pore fluid changes, rather than in the absolute
value of the effective moduli. A simple and elegant result derived by Gassmann
[1351a] s ideally suited to this purpose. Gassmann’s expression gives the
effective bulk modulus in terms of the intrinsic bulk modulus of the rock
matrix ﬁ, the bulk modulus of the dry rock frame K, the bulk modulus of the
fluid E, and the porosity ¢:

N
K = K£K+R) (531)
K+R .
where
~ AN _
R . KRR (5.32)
$(K-K

The pore geometry enters into this expression only through its effect on
the frame modulus (E) and the porosity. Both parameters can be measured
directly, as well as the intrinsic moduli of the pore fluid and the rock

matrix.
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In our use of Gassmann's relations, two assumptions are implicit. Ve
will assume that the rock matrix has a zero thermal expansivity. As shown in
table 5.2, the thermal expansivity of the rocks 1s at least an order of magni-
tude less than the thermal expansivity of the fluids, except for water at tem-
peratures near 49C. Attenuation due to thermal effects is so small when the
rock and fluid have comparable thermal expansivities, that it will probably be
masked by other mechanisms, such as viscous dissipation. When the expansivi-

ties are greatly different, however, attenuation may be substantial.

Shear effects. Equation (5.31) gives only relations for the bulk
modulus, and 1s derived on the assumption that the rock is 1isotropic on a
macroscopic scale and that the pore-fluid pressure is uniform throughout the
pore volume. This implies that all the pores are connected and neglects the
viscosity of the pore fluid. These assumptions are probably quite good for
rocks where well-connected round pores are dominant. Gassmann’s theory has
been used successfully in the interpretation of seismic data for sedimentary

materials [Brown and Korringa, 1975]7.

Winkler [1979] found that both the shear velocity and the attenuation in
& porous Vycor glass are much less sensitive to changes in the pore fluid
than compressional velocity and attenuation. In contrast, experiments with
granite samples showed significant dependence of both shear and compressional
properties on the state of the pore contents. For a rock that contains an
isotropic random distribution of 7solated flat cracks, both shear and bulk
modul1 will depend on the bulk modulus of the pore fluid [Korringa et al.,
1979]. Mavko and Nur [1979] have estimated that the effects of the pore
fluids on the shear response in rocks containing flat crack may be about half

the effect on compressional deformations.

Estimation of effactive bulk moduli. We seek expressions for the adia-
batic bulk modulus of pore fluids under various conditions. We have chosen to
express the results 1in terms of parameters that may be measured under condi-
tions of either constant pressure or temperature. Thus we will express the
adiabatic bulk modulus K' and the rate of temperature increase with pressure
b in terms of the isothermal bulk modulus K, the density p or the specific
volume V, the heat capacity at constant pressure ¢, and the coefficient of

thermal expansivity «. The parameters are defined in table 5.1.
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One of Maxwell’s relations [Kelly, 1973, p. 142] enables us to write the

stress heating coefficient, b, as

b - [’g"}]s i [%]P (5.33)

In the absence of any phase transitions this becomes

[BV}

TP TaV Ta ;

b {as] = T % . (5.34)
at)p

In order to get the adiabatic bulk modulus K' we may write
ov ov vy (o7 .
Gs = B+ &6 (5.35)

Using the definitions in table 5.1, this reduces to

ln—t

R B (5.36)

~

Equations (5.34) and (5.36) may be applied to heterogeneous systems, as
long as no phase transitions take piace. The isothermal bulk modulus and the
isobaric expansivity and heat capacity are not defined 1in the presence of
phase transitions: this case will be treated separately. The parameters used
will now be the effective parameters, Ke' a,. <, and Ve. for the system that
is being analyzed. For a porous rock where the matrix has no thermal expan-
sivity, a specific volume Vr’ heat capacity € and porosity ¢, and a pore
space containing & mixture of two fluids, indicated by subscripts 1 and 2
where the mass fraction of the first fluid is x, we have the following rela-

tions for the effective parameters of the pore mixture:

Ve = le + (l—x)V2 (5.37)

(5.38)

I 1[“1 (1-><)vz
1 2
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a = %— [xvlal + (l-x)Vzaz] (5.39)

Ve(l—é)cr

c = XC, + (l-x)c2 + Vr¢

(5.40)

Water-saturated rock. We will first consider & rock saturated with

K = K o = a, and

1iquid water. In this case x = 1, Ve = V. e 1' % 1

<l

1
€. = C. +

) A
e 1 V: s c (5.41)

r

Thus the only difference between the unrelaxed high-freguency 1limits., where
there 1is no thermal interaction, and the fully relaxed Timit, is an increase
in the effective heat capacity of the 11quid; the rock matrix acts as a heat
sink. The second term in equation (5.41) will tend to dominate when ¢<<I. For
low-porosity rocks the relaxed case is well-approximated by using the isother-
mal bulk modulus for the fluid.

Keenan et al. [1965] give an empirical eguation of state that fits the
observed behavior of 1liquid water and steam at pressures less than 100 Mpa
(1000 bar) and at temperatures less than 1000°C. Differentiation of this
equation yields an internally consistent set of thermodynamic parameters for
water and steam. Figure 5.5 shows a plot of the isothermal and adiabatic bulk
maduli of water, as functions of temperature, at the boiling pressure. At
room temperature there is 1ittie difference between the two curves, but the
difference 1ncreases rapidly at higher temperatures. Another notewarthy
feature on this plot is the rapid decrease of both the isothermal and adia-

batic bulk moduli at temperatures above 100°C.

Figure 5.6 shows P-wave velocities for three different rocks as functions
of temperature at a pore pressure of 10 Mpa (100 bar). The rocks have the same
intrinsic matrix velocity (6.5 kin/s) and the same dry P-velocity (1.5 km/s),
with Poisson ratios of .25 and .2, respectively. Porosities were chosen so as
to give saturated velocities of 2, 3, and 4 km/s. Two curves are shown for

each rock, one for the unrelaxed case and one for the relaxed case.
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FIG. 5.5. Adiabatic and isothermal bulk moduli of water, as functions of tem-

perature, at boiling pressure.
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FIG. 5.6. P-wave velocities for three different rocks saturated with 1ligquid
water, plotted wvs. temperature. The upper curve 1in each pair 1s the unre-
laxed, the lower is the relaxed velocity. The three rocks have the same dry
velocity, 1 km/s, and the same matrix material with a P-velocity of 6.5 km/s.
Porosities were chosen to give maximum saturated velocities of 2, 3 and 4
km/s. Pore pressure is 10 MPa.
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Figure 5.7 shows the attenuation obtained by applying equation (5.30) to
the results from figure 5.6. A1l three curves show a strong fhcrease in
attenuation with temperature. The example with the lowest porosity and the
highest saturated velocity shows stronger temperature dependence than the
other; this 1s due to an increase in the fraction of the total strain energy

that is stored in the pore fluid as 1ts compressibility increases.

The examples 1in figures 5.6 and 5.7 were computed for specified values of
the dry and saturated velocities. For comparison with in-situ observations,
it may sometimes be more desirable to specify porosity rather than dry velo-
city since the latter may be more readily estimated. Figure 5.8 shows a con-
tour plot of the attenuation, predicted as a function of porosity and tempera-
ture, for & rock with a saturated velocity of 4 km/s and an 1intrinsic velocity
of 6.5 km/s. As before, a strong dependence of attenuation on temperature is
indicated, but at high temperatures the attenuation increases as porosity (and

the dry velocity) decreases.

Gas and 1iquid. The second example that we will consider 1is for rock
where the pore space contains a mixture of a gas phase and Tiquid water, such
that the two wmaterials do not 1nteract except through the fiow of heat from
one to the other. Figure 5.9 shows relaxed and unrelaxed velocities for three
different rocks, chosen to have properties similar to those used by Domenico
{1974], as representative of sand reservoir rocks at depths of 600, 1800 and
3000 meters (2000, 6000, and 10000 feet). The corresponding attenuation
values are plotted in figure 5.10. The gas is assumed to be an ideal gas with
the ratio between the adiabatic and isothermal bulk moduli 4 = 1.4, the

theoretical value for a diatomic gas. The density was assumed to be that of

air, a = 0.02%kg/mol. The other parameters are given by
RT :
V = aP (5.42)
K = P (5.43)
« - 1 (5.44)
¢ = —R_ (5.45)

(y-1)a
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FIG. §.7. Attenuation as a function of temperature for the conditions in fig-
ure 5.6.
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FIG. 5.8. Attenuation for water-saturated rocks, as a function of tgmperature
and porosity, for rocks with a P-wave velocity of 3.5 km/s at 65°C and an
intrinsic matrix velocity of 6.5 km/s.
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FIG. 5.9. Computed relaxaed and unrelaxed P-wave velocities for rocks con-
taining a mixture of gas and water. Rock parameters are the same as used by
Domenico [1974], as representative of conditions 1n sand reservoirs at depths
of 2000, 6000 and 10,000 feet.



79

o U 1 I I

0.0l 0.1 I IO 100
VOLUME FRACTION GAS (%)

FIG. 5.10. Attenuation for the rocks in figure 5.8,
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where R is the gas constant, 8.314 J/mol. The gas parameters are combined
with those for water using equations (5.37)-(5.40) and then substituted into

Gassmann’'s formula (5.31).

Our results show the same qualitative dependence of velocity on gas
saturation as was reported by Domenico [1974], while there 15 & substantial
drop in velocity as small amounts of gas are introduced 1nto water-saturated
rock; there s little difference in velocity between rocks with 10% and 100%
of the pore volume gas, for all of the cases shown. Attenuation increases as
gas 1is 1introduced into the pore space, reaches a peak, and then falls off and
1s minimum when no water is left in the pores. The gas saturation at the peak
is roughly nproportional to the pore pressure. The examples in figure 5.10
show a large change in attenuation as the gas fraction changes from 5% to
100%, while the velocity 1s virtually unchanged over this range. This may be

of interest 1in exploration for natural gas and geothermal resources.

Winkler and Nur [1979] and Frisillo and Stewart [1979] present laboratory
results showing the same qualitative features, but with the attenuation peak
occurring when the gas saturation is between 10% and 30%. This discrepancy
between our theoretical and these experimental results may be caused by
microscopic inhomogeneities 1in the pore space. The pore space may consist of
both wide pores and relatively flat cracks, which are not all connected at the

sonic and ultrasonic frequencies used in these experiments.

Systems with more than one phase. In the presence of phase transitions
we can no longer use equation (5.35) since (GV/GP)T is not finite. To get the

effective adiabatic bulk modulus we may write
av oV aT
Bs - s)s (5.46)

Use of the Maxwell’s relation (5.33) yields the Clausius-Clapeyron equation

T(V, -V}
12

where le is the latent heat released in the transition from state 1 to state
2. The other factor on the left side of (5.46) 1s obtained by writing
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B+ B BB B o
aT)s oTJP,x OFT.x(BTJS OXjP,TBTJS :
The first term in (5.48) 1s obtained from equations {(5.39) and the second
term from (5.38) and (5.47). For the final term we have
av
[5§JP.T = (v2 - Vl) (5.439)
The final factor, (ax/aT)S, is obtained by writing
as as X as as) (or .
[5?']5 0 [EY]P.T[E?]S * [ﬁ]?.x * ["a'ﬁ'] [5'7'}5 (5.50)

Through the use of Maxwell'’'s fourth relation [Kelly, 1973], this becomes

Substitution of equations (5.48) and (5.
the bulk modulus give the result

<[~

where b 1s given by equation (5.47) and
(5.37), (5.39), and (5.40).

We have applied equation (5.52) to

the pore space contains a mixture of

laxed velocities are shown as functions

Figure 5.12 shows the corresponding

steam into a water-saturated rock results in a drop of the

modulus, to a value

~ e+ (5)e .57
TP, x aTJP,x|OT)S o
{6_3_ (5.51)
axje,T
51) into (5.46) and the definition of
1 bzce
E— - Zbue + VT (5.52)
e e

Ve, @, and ce are given by equations

two cases. One 1s a porous rock where
water and steam. The relaxed and unre-
of mass fraction steam in figure 5.11.

attenuation. The introduction of any

effective relaxed

that 1is essentially the same as the modulus of the dry

rock. This results in attenuation that is much greater than when phase transi-

tions are absent.
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FIG. 5.11. Relaxed and unrelaxed P-wave velocities for a rock contatining a

mixture of water and steam at a temperature of 2000C. The dry velocity is 2
km/s and the saturated velocity 1s 3 km/s.
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FIG. 5.12. Attenuation for the conditions in figure 5.11.
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Another case where phase transitions are expected to play a significant
role is in rocks that contain partial melt. Carmichael et al. [1977] give
equations of state for several minerals that satisfy measured heat capacities
and the observed dependence of melting temperature on pressure up to about 4
GPa (40 kbar). They give empirical relations for (1) the dependence of the
specific volume on both temperature and pressure, and {2) heat capacity and
the latent heat of fusion at room pressure. The empirical expressions are
readily integrated to obtain the Gibbs free energy as a function of tempera-
ture and pressure. The Gibbs free energy may be used to compute the melting
temperature, and differentiated to yield the heat capacity at any pressure.
The resulting set of thermodynamic parameters 1s guaranteed to be dinternally
cansistent; this 1s 1{mportant because equations (5.36) and (5.52) involve
differences between terms of similar size. Figure 5.13 shows the effective
bulk modulus for & mixture of solid and liquid olivine (fayalite), for three
different cases: unrelaxed without any phase transitions or heat flow; thermal
equilibrium without any phase transitions, and both thermal and phase equili-
bria. Figure 5.14 shows the attenuation, both with and without phase transi-
tions. In these examples we have neglected the effects of the shear strength
of the solid phase. The effect of the shear strength of the rock 1s ta reduce
the difference between the relaxed and unrelaxed effective moduld, and thus
the attenuation at low melt fractions, unless the melt surrounds the solid
grains or is in the form of very thin films. The effects of other melt confi-

gurations are treated in detail by Mavko [1979].

Implications For Exploration

Hydrocarbons. Most of the cases where we have predicted significant
absorption due to thermal effects are of interest in the exploration for
energy resources. The calculations for water and gas wixtures should give an
indication of the degree of losses that might be expected in rocks that con-
tain gas. Our results for this case, as shown in figure 5.10, indicate that
thermal relaxation will be responsible for a significant amount of absorption
when gas 1s present in small amounts, and that the 1oss will be strongly
dependent on the degree of gas saturation, even in the range where the wave
velocities are insensitive to the amount of gas present. The results from

figure 5.10 would have been virtually the same had an incompressible 1iquid
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FIG. 5.13. Bulk modutus of olivine as a function of massfraction melt, at a
pressure of 2 GPa. Shown are the unrelaxed bulk modulus {top curve), the
thermally relaxed without phase transitions, and the compietely relaxed bulk
modulus including the effects of phase transitions (bottom).
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FIG. 5.14. Attenuation for olivine under the same conditions as in figure
5.13. Upper curve is the attenuation when phase transitions are included; the
lower curve shows the attenuation caused by heat flow without any phase tran-
sitions.
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been used instead of water; the loss is controlled primarily by the properties
of the gas. As most gases have properties similar to ideal gas, the results
from figure 5.10 do apply to any gas-liquid mixtures, as long as the gas does
not dissolve in the liquid. Any solubility of the gas in the liguid will have
the effect of lowering the relaxed bulk modulus and thus dincreasing the
absorption. This may be the case in most, if not all cases involving hydrocar-
bons in situ, whether the fluid is brine or oil. Consequently, the <calcula-
tions in figure 5.10 should be considered lower bounds for the absorption due
to thermal relaxation. The actual response of oil-gas or brine-gas mixtures

may be more 1ike the response of water-steam mixtures (figure 5.12).

It has been noted 1n the 11terature that anomalously low amplitudes are

sometimes associated with gas zones [Sheriff, 1975; Dobrin, 1976].

Geothermal. Several of the conditions that result in significant thermal
losses are related to features of interest in geothermal exploration. Some of
the larger concentrations of geothermal energy are associated with recent
igneous activity. Observations of P-wave absorption may aid in the location of

zones of partial melt at depth, and thus delineate potential sources of heat.

Geothermal energy is wutilized in three different forms, each of which is
presently of roughly the same economic significance. Low-temperature thermal
waters, with temperature at depth ranging from 65°¢C to ZOUOC. are useful as a
direct source of heat for space heating and various industrial processes. If
the pore pressure at depth is anywhere close to hydrostatic, the water will be
in the 11quid state and boiling will only take place very near the surface.
The results from figures 5.6-5.8 are relevant to +these circumstances, and
imply that the absorption will increase almost linearly with temperature, at
temperatures from SOOC to ZOOOC.

The results of our calculations for liguid water are alsoc applicable to
high-temperature geothermal systems. Figure 5.15 shows the boiling temperature
of water, as a functioen of pore pressure. Boiling temperature of 180° s
reached at & depth of about 100 m, 1f the pore pressure is hydrostatic. At
higher temperatures the boiling point curve does level off toward the critical
point at 374°C and a pressure of 22.1 MPa. It is thus possible that high-
temperature water-dominated systems could reach the boiling pressure at

depth, even 1f the pore pressures are close to hydrostatic. This would result
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