Chapter IV

REFLECTIONS DUE TO CONTRAST IN Q

Reflection and transmission coefficients are derived for anelastic
materials by matching displacements and tractions across the interfaces just
as in the elastic case. The stress at any point in a Tinear material may be
found by convolving the strain with a modulus fiiter; the requirements of
causality and physical realizability are satisfied when the integral of the
modulus is an impedance function [Claerbout, 1976]. Specializing to mono-

chromatic plane waves at normal incidence, with an interface at z = 0, we have
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where ¢ is stress, € is strain, U is displacement, m is the modulus filter, »

is density, and c¢ is a velocity-11ke quantity, defined by

Zlw) = ‘“f’"’) (4.2)

Equation (4.1), when combined with the equilibrium equation, leads to a wave
equation, which has the same form as the usual wave equation, except ¢ enters
as a filter in the time domain or as a frequency-dependent complex function 1in
the frequency domain. Plane-wave solutions to the wave equation may be writ-

ten as the incident, reflected, and transmitted wave displacements:

Ui = exp[iu t - 35 (4.3a)
1))

U = Rexp|fa|t + c—z (4.3b)
L | 1]

Ut = T exp|iw|t - Ei (4.3c)
i 2]

At the interface, z=0, continuity of the displacements implies that
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u, +u = U (4.4)

or

T = 1+ R (4.5)

Substituting equation (4.1) into (4.2), and imposing continuity on the

stresses, we get
P1¢y - Rplcl = Tp2c2 (4.6)

This combined with (4.5) gives

p,C. - p,C
R = 1c1 - 2C2 (4'7)
P1C1 * 2

The form of ¢ depends on the particular material. The response of most rocks
is well approximated by the constant Q formulation [Kjartansson, 1979], where

¢ has the form

1
C = ¢ [yﬂ (4.8)
0w
0
where @, is an arbitrary reference frequency and 4 is related to Q by
1
¢ = tan(my) (4.9)

Substitution of (4.8) into (4.7) gives

P1%1 (4777, .
P2%02 (%

R = — (4.10)
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This shows that when the Q for both media are the same, the reflection
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coefficient 1is real and independent of frequency. The power series expansion

for the natural logarithm, given by

1 _ol-x 1(1-x33  1([l-x}5
Tinx o= X, 3[1+x] " s(fii] ol (4.11)
may be used to rewrite (4.10):
p.C . .
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02 0
When R 1s small we can neglect third and higher powers of R. Then equation
(4.12) reduces to
P1%17P2%2 1 -
R ST IO 5{71—12)1n ol * 1%%71—12)sgn(u) (4.13)
P1%01™P2%02 0

Thus the reflection may be treated as a sum of two contributions: a real
frequency-independent part and a frequency-dependent part that depends on the
Q contrast and 1s similar to a Hilbert transform of the incident wave, except

that 1t is one-sided (causal) in the time domain.

Discussion

McDonal et al. [1958] measured attenuation in water-saturated shale 1in
situ. They observed Q values of about 30 for P-waves and 10 for S-waves. The
laboratory results of Winkler and Nur [13739] indicate that Q may be an order
of magnitude more sensitive than velocity to changes in conditions such as
saturation or pore and confining pressures, and that  P-wave attenuation in
partially saturated rocks may be much greater than in fully saturated or dry
rocks. This raises the possibility that a substantial portion of the reflec-
tions observed 1in some areas are caused by changes in Q rather than elastic

impedance.



