Chapter II

CONSTANT Q -- WAVE PROPAGATION AND ATTENUATION

A fundamental feature associated with the propagation of stress waves in
a1l real materials is the absorption of energy and the resulting change in the
shape of transient waveforms. Although a large number of papers have been
written on the absorption of seismic waves in rocks, little, if any, general
agreement exists about even the most fundamental properties of the processes
involved. Table 2.1 shows a summary of the basic features of some of the dif-

ferent attenuation theories.

Early laboratory work on absorption in rocks showed the loss per cycle or
wavelength to be essentially independent of frequency. Since at that time no
known linear theory could fit this observation, Born [1941] proposed that +the
loss was due to rate-independent friction of the same kind as observed when
two surfaces slide against each other. Kolsky [1956] and Lomnitz [1957] gave
linear descriptions of the absorption that could account for the observed
frequency-independence and were also consistent with other independent obser-
vations of the transient creep in rocks and the change in shape of pulses pro-
pagating through thin rods. Despite this and the fact that a satisfactory
nonlinear friction model for attenuation has never been developed to the point
where meaningful predictions could be made about the propagation of waves,
nonlinear friction is commonly assumed to be the dominant attenuation mechan-
ism, especially in crustal rocks [McDonal et al., 1958, Knopoff, 1964; White,
1966; Gourdon and Davis, 1968; Lockner et al., 1977; Johnston and Toksoz,
19771].

A different type of theory for attenuation has been advocated by Ricker
[1953, 1977]. In his model the absorption is described by adding a single
term to the wave equation. Because of this simpiicity, the theory of the pro-
pagation of +transient waves has been further developed than for the other
theories. For this reason, wavelets based on the Ricker theory have been com-
monly used in the computation of synthetic seismograms [Boore et al., 1971;
Munasinghe and Farnell, 1973], although the frequency-dependence of Q that 1is

implied by the model contradicts practically all experimental observations.
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In this paper, we will discuss some of the data Ricker interpreted as in sup-

port of his theory.

Recently, there has been renewed interest in the effects of anelasticity
on wave propagation in rocks. Liu et al. [1976] found that the change 1in the
elastic moduli implied by attenuation over the frequency range covered by
seismic body waves and free oscillations, was about an order of magnitude
greater than the uncertainty in the measurements. The models used by Liu et
al. [1976], as well as all of the other nearly constant Q (NCQ) models, have
included at Teast one parameter that is in some way related to the range of
frequencies over which the model gives Q nearly independent of frequency. How
this cuteff 1s chosen appears to be quite arbitrary and the physical implica-
tions of the cutoff parameters are different between the models of Lomnitz
[1957], Futterman [1962], Strick [1967], and Liu et al. [1976].

In this paper a linear description of the attenuation 1s given, that
features Q exactly independent of frequency, without any cutoffs. The constant
Q (CQ) model is mathematically much simpler than any of the NCQ models: it is
completely specified by two parameters, 1. e. phase velocity at an arbitrary

reference frequency, and Q.

Most of the NCQ papers have described wave phenomena 1in the frequency-
domain and have restricted their analysis to cases where Q i1s large (Q > 30).
In contrast, the simplicity of the CQ description allows the derivation of
exact analytical expressions for the various frequency-domain properties, such
as the complex modulus, phase velocity, and the attenuation coefficient, that
are valid over any range of frequencies and for any positive value of Q. In
this paper more emphasis will be placed on the time-domain description of
transient phenomena, and exact expressions for the creep and relaxation func-
tions and scaling relations for the transient wave pulse will be given. 1In
addition, approximate expressions will be given for the impulse response, as a

function of time, that results from a delta-function excitation.

We will aiso show that when the freguency range 1s restricted and the
losses are small, the results obtained from the various NCOQ theories. approach

the same 1imit as those obtained from the CQ theory.



Definitions and Background

Seismic attenuation is commonly characterized by the quality parameter Q.
It is most often defined in terms of the maximum energy stored during a cycle,
divided by the energy lost during the cycle. When the 1loss is large this
definition becomes d{mpractical; O’'Connell and Budiansky [1978] suggested a
definition in terms of the mean stored energy W and the energy loss AW, dur-

ing a single cycle of sinusoidal deformation.

49\

C =W

(2.1)

When this definition is used, Q is related to the phase angle between stress

and strain, 8§, according to

= tan § (2.2)

O]+~

The fact that amplitude-dependence of the propagation velocity and Q at
strains less than 10-6 has not been observed, strongly suggests that at these
amplitudes the material response 1s dominated by l1inear effects, or 1n other
words, the strain that results from a superposition of two stress functions is
equal to the sum of the strains that result from the application of each
stress function separately. When two effects are linearly related, the rela-
tionship may be expressed through a convelution. ~ Thus the relationship

between stress and strain in a Tinear material may be expressed as

o(t)

m(t) * e(t) (2.3)

e(t) s(t) # o(t) (2.4)

where o¢(t) 1is the stress as a function of time, e(t) is the strain, and m(t)
and s(t) are real functions that vanish for negative time. The convolution

operator * is defined by

o
F(t) ® g(t) = J F(t-t")g(t')dt" (2.5)

-00



. The relationship between stress anhd strain given in (2.3) and (2.4) was first
given by Boltzmann [1876]. Our notation differs from Boltzmann’s original
notation only in that the functions m{t) and s{t) may include generalized
functions such as the Dirac delta function or its derivatives. Combination of

(2.3) and (2.4) implies that m(t) and s{t) must satisfy the condition

§(t) = m(t) % s(t) (2.8)

where §(t) is the Dirac delta function.

Manipulations involving convelutions are usually facilitated by the wuse
of the Fourier transform. We will use lower case letters to designate func-
tions of time and capital letters for their Fourier transforms according to
the definition

Fl) = Jf(t) e 9% (2.7)

The inverse Fourier transform is then given by

F(t) = %—;JF(:») e ¥ty (2.8)

Bracewell [1965] gives a discussion of the formalism required for the exten-

sion to generalized functions.

Using the convolution theorem [Bracewell, 1965; p. 108], equations (2.3),
(2.4) and (2.6) may be rewritten:

Hw) = M(w)E(w) (2.9)
E(w) = S{w)Z(w) (2.10)
1 = Mw)S{w) (2.11)

where 2(w) is the Fourier transform of the stress, E(w) is the Fourier
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transform of the strain, and M(w) and S(w) are the Fourier transforms of m(t)
and s{(t). Thus, the stress and the strain are in the frequency-domain related
through a multiplication by a modulus M(w) or compliance S{w) just as in the
purely elastic case, the only difference being that the modulus may be complex
and frequency-dependent. This relationship s commonly referred to as the
correspondence principle. By the substitution of a unit step function into
(2.3) and (2.4), 1t 1s weasily shown that m(t) and s(t) are the first time
derivatives of the relaxation and creep functions, where the relaxation func-
tion, ikt). is the stress that results from a unit step in strain, and the

creep function, ¥(t), is the strain that results from a unit step in stress.

When the stress-strain relations are combined with the equilibrium equa-
tion, the resulting one-dimensional wave equation has a solution that may be

written 1n a form analogous to the classical case:

U(t.x) = expli{wt-kx)] (2.12)
where
k- (M(z‘)]z (2-13)

and p 1is the density of the material.

The Constant Q Model

The development so far has been compietely general; no assumptions other
than 1linearity and causality have been made about the properties of the
material. We will now examine a particular form for the stress-strain rela-
tionships and show that 1t 1leads to a Q that is independent of frequency.
Frequency-independent Q implies that the loss per cycle 1s independent of the
time scale of woscillation; therefore it might seem reasonable to try a

material that has a creep function that plots as a straight line on a 1log-log
plot, or
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For the sake of convenience in subsequent manipulations, we will use a creep

function of the form

1 ¢ )27
t) = m{i—o-] t >0 (214)

T is the gamma function which in all cases of interest to us has a value
close to unity and to is an arbitrary reference time introduced so that
when t has the dimension of time, MO will have the dimension of modulus. Some
of the properties of a material that has this creep Ffunction are discussed by
Bland [1960, p.54]. Response functions of this form have also been used to
model dielectric 1losses in solids [Jonscher, 1977]. Differentiation of the

expression in (2.14) yields

29 [t 27,
s(t) = Mor(1+21)[€3] T t >0 (2.15)
s(t) = 0 t <O
Taking the Fourier transform we get
-27
S{w) = %~ To (2.18)
0%
where
1
wy = T (2.17)
0
Using (2.11) we get
2y I |27
Mlw) = M T = M |‘-"—| exp[ ixy sgn(w)] (2.18)
0 Wy Ulwol
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FIG. 2.1. The constant Q «creep function as given by equation (2.14), in

units of l/MO. plotted versus time in units of to.
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where

n
Pt

sgn{w) w>0 (2.19)

n
¥
[y

sgn(w) w <0

Taking the inverse Fourier transform of M{(w) and integrating, we get the

retaxation function

- ”o t -2y
¥ty = 0 t <0

Figure 2.1 shows a plot of the constant Q creep function (2.14), and figure
2.2, of the relaxation function (2.20), for several values of Q. Equation
(2.18) shows that the argument of the modulus and thus the phase angle beween
the stress and the strain, is 1independent of frequency; therefore, 1t follows

from the definition of Q (2.2) that Q is independent of frequency:

% = tan(wy) (2.21)

or
y = -—tan—l[é-] -~ L (2.22)

The approximation is valid when 'i)-2 << 1. Since both the creep and relaxation

functions vanish for negative time, no strain can precede applied stress, nor

canh any stress precede applied strain; the material 1s causal.

To investigate the propagation of waves in the constant Q wmaterial, the
modulus given by (2.18) may be substituted into the soluttion to the one-
dimensional wave equation, given by (2.12) and (2.13): the result may be writ-

ten as
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~ax Tw(t-x/c)

U(t,x) = e e (2.23)
where
v
¢ c. |2 (2.24)
0w
0
a = tan['-;l]sgn(u)'ci (2.25)
EQ E
I
C T m— (2.26)
" cos[R

Since ¢ is slightly dependent on frequency, constant @ is not exactly
equivalent to assuming that e« is proportional to frequency, as is often
assumed in the 1iterature. It 1s clear from (2.24) that CO is simply the
phase velocity at the arbitrary reference frequency wg - In the final section
of the paper, we discuss the 1low- and high-frequency 1limits for the phase
velocity and the modulus, and the short- and long-term behavior of the creep

function.

An alternative to (2.23) is to write the solution to the wave equation as

X

U(x,t) = exp|iw|t - ————— (2.27)
cs(iw)1
where c is a constant related to M0 by
1
M0 £ —y
e, = [;—] @, (2.28)

Use of the complex velocity notation, as in (2.27), often simplifies the alge-
bra, e.g. 1n the derivation of reflection coefficients or when modeling wave

propagation in two or three dimensions.
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As most wave phenomena encountered in seismology are transient in nature,
a time-domain description of wave propagation is often more useful for model-
ing or comparison with data than a frequency-domain description. The waveform
that results from a delta-function source, the impulse response, 1s particu-
larly useful since the waveform that results from an arbitrary source is
obtained by simply convolving the source with the impulse response. The
Fourier transform of the impulse response, b(t), 1s obtained by omitting the
jot term in (2.12) or (2.23):

Blw) = e g Twx/c (2.29)

By the substitution of (2.24) and (2.25) 1into (2.29), we get

Blw) = exp{- ifg 1_1[tan[gzﬂ + 1 sgn(w)]} (2.30)

9 (%

The 1impulse response may be obtained by taking the inverse Fourier transform
of B{w) given by (2.30). Although we do not have an analytical expression
for b{t), we will present a useful approximate relation and some exact scal-

ing relations. We will rewrite (2.30) as

Blw) = Bltul) (2.31)

where
w, = tlw (2.32)

Xw, B
tl = tu E~— (2.33)
0
1 ~ 1
g = T:-; - 1+;6- . (2.34)
and

Bl(m) = exp{-|w|1-1[tan[EzJ + 1 sgn(u)]} (2.35)
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It now follows from the similarity theorem [Bracewell, 1965; p. 101] that for
any homogeneous material, the 1mpulse response at any distance x from the

source will be given by

b(t.x) = %—bl[{—] (2.36)
1 1

Equations (2.36) and (2.33) imply that in a given material, the traveltime T,

the pulse width s, and the pulse amplitude A are related accaording to

o

g
T o 71 oc;l\— o [—"—] (2.37)
where any consistent operational definitions for the traveltime and pulse
width may be used. The proportionality between traveltime and pulse width may

be expressed as

- c(o)% (2.38)

where €(Q) 1is a function that depends only on Q. We will show that C(Q) is

nearly constant for Q > 20. Figure 2.3 shows a plot of the function bl(t),
for several values of Q.

In order to illustrate the scaling relations, sejsmograms due to impul-
sive sources at several distances are plotted on a common set of axes in fig-
ure 2.4. Figure 2.5 shows the same information but scaled according to dis-
tance, by dividing the time by the distance and multiplying the displacement
by the distance. Velocity dispersion has the effect of delaying +the pulses
from the more distant sources more than would be expected for a constant pro-
pagation velocity. To further 1llustrate the dispersion, figure 2.6 shows the
results of the same kind of numerical experiment as figure 2.5, for a.Q of
1000 and covering a larger range of distances. It may be concluded from fig-
ures 2.5 and 2.6 that the dispersion due to the anelasticity is directly
observable in the time domain when the traveltime, in a homogeneous materiatl,
can be measured to within half a pulse width over a ratio of 10 in distance.

This applies to high @ as well as to low Q materials. To measure this effect
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FIG. 2.4. Seismograms resulting from sources at distances of 0.25, 0.5, 1, 2
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Q = 1000. This shows that the dispersfon effect, relative to the pulse width,
is independent of Q when Q >> 1.
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in the earth would, however, require a careful control over the spatial varia-

tion in velocity.

The required control may be obtained when the wave travels the same path
more than once. Waves reflected off the core-mantle interface may satisfy this
condition for stations near the source. Assuming an average Q = 160 and a
traveltime of 936 seconds for one pass of ScS [Jordan and Sipkin, 1977], we
obtain by a substitution into (2.34) a value for B = 1.0020. Equation
(2.37) 1implies then that doubling the distance will result in a total travel-
time of 1874.6 seconds for 3¢S,, which 1s 2.6 seconds longer than would be

2
expected 1f the dispersion were not present.

Approximations For Time-Domain Wavelets

So far we have made no assumptions about the value of Q (other than Q >
0), or the ranges of freguencies and traveltimes involved. Although we have
been able to derive exact expressions for all frequency-domain properties of
the wave propagation, we do not have exact analytical expressions for time-
domain wavelets or impulse responses. While modern computer techniques (e.g.
the fast-Fourier-transform algorithm) wmake 1t relatively easy to transform
data to the frequency domain and back, it is still useful to study the time-
domain waveform, especially since much of earthgquake data is still recorded in
an analog form. The need for a convenient time-domain representation fis
demonstrated by the fact that wavelets based on the Votgt-Ricker model are
often used by workers who do not accept the frequency-dependence of ¢ implied

by that model [e.g. Boore et al., 1971; Munasinghe and Farnell, 1973].

Strick [1967] applied the causality requirement to the propagation of a
wave pulse, and found a form for the propagation function that satisfies this
requirement. The constant Q transfer function (2.23), is a special case of
Strick’s function. Later Strick [1970] used the method of steepest descent to
approximate the time-domain impulse response. His expression has, 1in the

notation used in this paper, the form

-1/9)-% 1/y
. (1-y)x oY | -y)x
bo(t.x) = {Z"tl c_t ] } exp{ (1—7)“[ c .t ] }
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where bs(t,x) denotes Strick’s approximation to the impulse response, and ¢

s
is defined by (2.28). By rearranging this expression, it may be written as
x| P (1724 -1/94-%
b(tox) = [=| t [2xy(1-v) 1°
s
expl-y(1-y) (1777 171/, (2.39)

where

By differentiation we get the approximation for the differentiated JImpulse

response, bsv(t,x):

-8
b, (t.x) = [ij bs(t,x)[(1—7)1/’t;1/7 -l (2.40)

¢ 21ts

It is evident from inspection of these expressions that they do obey the
correct scaling relations given by (2.37). Figures 2.7 and 2.8 show a compar-
ison between the waveshapes computed by the fast-Fourier-transform-method and
those computed using the steepest-descent approximation. They show an excel-
lent agreement for the early part of the pulse, which. includes most of the
higher-frequency information, while the steepest-descent approximation
underestimates the low-frequency amplitudes in the later part of the pulse.
This 1s not surprising since the assumptions involved 1n the steepest descent
approximation break down at very low frequencies. This agreement contrasts
with the result of Minster [1978a], who in his Figure 3 shows significant
differences between arrivals computed using FFT methods and those computed

using analytical expansions.

So far we have only considered the pulse propagation 1in homogeneous
materials and given scaling relations applicable to materials with the same
value of Q. As the waveshapes plotted in figure 2.3 show a great deal of

similarity for different values of Q, it should be possible to give scaling
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relations for different values of Q as well as for different distances.

When Q‘2 << 1, the tangents in (2.22) and (2.25) may be replaced by
their arguments. Thus (2.23) and (2.25) may be written as

~ xlwl X
Blaw) = exp{ " 200 T c} (2.41)
where
1/%Q
¢ I e | (2.42)
0 w,

By use of the Maclaurin-series expansion of the exponential function, equation

(2.42) may be written as

1 ® 11 | Wl
1+ ;— n ""(']" + ET[;G 1n|‘-°——|] + ..... (243)
170]

When a1l the frequencies ef interest satisfy the condition

—l-1n

pory K 1 (2.44)

A
0

sufficient precision may be maintained by only including the first two terms
of the expansion given in (2.43). The result is the dispersion relation given
by many of the NCQ papers [e.g. Kanamori and Anderson, 1977]. Using the
approximation indicated in (2.43), and dropping all terms involving the second

or higher powers of 1/Q, equation (2.41) becomes

' - S xeisgn(e) . 1l -
B'{w) = exp{ co[ 20 " 1 o n > ]} (2.45)

The similarity and shift theorems [Bracewell, 1965; p. 101] may now be used to
relate the approximate impulse response b'(t) that has B'{w) as its Fourier

transform, as indicated by the following relations:
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b'(t) = rbi(t') (2.46)
where
t' s rt - Q + L In— (2.47)
* o
0
COQ
ros o (2.48)

and bi(t) is the inverse Fourier transform of
B.(w') = expi- w'|: sgn(w') - L 1n|w'|] (2.49)
1 2 L

As long as the condition given by (2.44) holds, 1t is possible to obtain
waveshapes for materials with different Q as well as different traveltimes by
a combination of scaling and shifting of a single pulse shape. 1In particular,
it follows from (2.46) and (2.48) that the amplitude of the pulse will be
approximately proportional to Q. This result, combined with the exact scaling
relations (2.37), impiies that the function C(Q), defined by (2.38),
approaches a constant value as Q becomes large. In order td test the wuseful-
ness of (2.38), we have evaluated numerically the value of C(Q). The results
are plotted 1in figure 2.9, for two pulse-width definitions and three different
traveltime definittons. These curves show that the value of C(Q) is practi-
cally independent of Q, for Q greater than about 20. The similarity of the
pulse shape for different values of Q implies that the pulse broadening along
the wave path may be summed and (2.38) written as

dt

~ dT .
r = J‘C(0)5~ M J'a— (2.50)

This retlation may provide the basis for a practical method far inverting
models for the anelastic properties of rocks in situ when the wave sources
are sufficiently impulsive and the waves are recorded on broadband instru-

ments. The ambiguities involved in using the pulse breadth in this manner,

are far less than those involved in the use of amplitudes in a narraow
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frequency band, since & number of purely elastic effects, such as focusing
from curved interfaces, can have large effects on the amplitudes of seismic
signals. This approach also has the advantage over spectral methods that the
measurement may be done on a clearly defined phase of the waveform [Gladwin
and Stacey, 1974]. It should be noted that equations (2.38) and (2.50)
apply for other pulse-width measures than rise time, but the value of C¢{(Q)

will of course be different.

Field Measurements of Attenuation

There have been relatively few field studies of the propagation of tran-
sient wave pulses 1in rocks. Gladwin and Stacey [1974] found that the rise
time ¢, which they defined as the maximum amplitude divided by the maximunm

slope on the seismogram, could be fitted by an expression of the form

T = r_+ C% (2.51)

where o indicates the rise time of the source and C was a constant with a
value of 0.53+0.04 This value 1is 1in reasonably good agreement with the
value of 0.485 for large Q predicted on the basis of the €Q theory (figure

2.9).

McDonal et al. [1958] performed experiments in wells drilled into the
Pierre shale formation near Limon, Colorado. Fourier analysis of their data
indicated that individual Fourier components of the waveforms decayed exponen-
tially in amplitude with distance and that this decay was proportional to fre-
quency. The attepuation per 1000 feet was given in decibels as 0.12 times fre-
quency. Substituting this wvalue 1nto (2.41) and using a velocity of 7000
feet/s gives Q equal to 32. This result was obtained at depths of several hun-
dred feet. Deep reflections indicated that the attenuation decreased with
depth with the average attenuation down to a depth of 4000 feet <corresponding
to a Q of approximately 100. Their waveforms did not show a large amount of
broadening over a ratio of 5 in traveltimes; this indicates that the sources
were long compared to the impulse response of the wave path so the assumption
of a delta function source is not appropriate. However, if the rise times of

the waveforms shown 1in figures 2.3 and 2.6 of McDonal et al. [1958], are
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FIG. 2.9. Plat of the function C(Q) defined by equation (2.39). Each pair
of curves was computed using a pulse-width measure: the rise-time definition
of Gladwin and Stacey [19741, i.e. maximum amplitude divided by maximum slope.

The top pair of curves applies to the impulse response b(t),

curve applies to its derivative. The lower curve in each pair

and the lower
was computed

using as traveltime T +the arrival time of the peak of the pulse, and the

upper was computed using the arrival time of maximum slope.
values are 0.485 and 0.298.

The asymptotic
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fitted to the expression (2.51), a reasonable fit may be obtained using C = .5
and Q = 30. This 1is <consistent with the first part of the source being

approximately a delta function in velocity or a step function in displacement.

Ricker [1953, 1977] described experiments done in 1948 in the same forma-
tion. Waveforms were recorded by three geophones at depths of 422, 622 and
822 feet, for shots at depths less than 300 feet in adjacent wells. Figure
2.10 shows a plot of pulse width vs. traveltime [Ricker 1977; Figure 15.23].
Ricker fitted this data by a function of the form

N\P-

at (2.52)

-5
B

This relation 1s 1n direct conflict with equation (2.37), as well as the
experimental result of Gladwin and Stacey [1974]. According to Ricker [1977,
pl38], this observation is the strongest, if not the only evidence supporting
the applicability of his theory to seismic waves. By inspection of figure
2.10 1t appears that the data could just as well be fitted by a function of
the form (2.51) used by Gladwin and Stacey [1974]. McDonal et al. [1958] cri-
ticized Ricker’s experiment on the basis that each shot was recorded by no
more than three geophones, and that waveforms from different shots were not
comparable because, "One cannot shoot a second time 1in the same hole because
the same hole 1s not there any more." This 1s probably the reason for some of
the scatter in Ricker’'s data, particularly from the 300-foot shots. This
0 in {(2.51) for

each shot, provided that 1t 1s recorded by at least two geophones. Thus we

error can be reduced, however, by adjusting the parameter ¢

have fitted the wavelet breadth data to a model given by

dT .
T o= T+ o J'a— (2.53)

In order to facilitate the 1integration, the traveltime data were fitted to the

form

2 2 .
T = a(xg~xs) + b(xg-xs) (2.54)

where xg 1s the depth to the geophone and xs is the depth to shot. This
expression implies that the velocity as a function of depth will be given by
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FIG. 2.10. Pulse width as a function of traveltime 1in Pierre shale. Data from
Figure 15.23 in Ricker [1977]. Geophones are at depths of 422, 622, and 822
feet. Sources are at 25-foot dintervals at depths from 100 to 300 feet.

Numbers ind‘icate sources,

31

1 for 100 feet, to 9 for 300 feet.
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FIG. 2.11. The data in figure 2.10, after subtraction of the initial pulse
widths, compared with predicted pulse widths for Q = 32. Both Q and the source
widths were determined by simultaneous least-square inversion.
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) 1 =
v o= a + 2bx (2.55)

As Ricker did not specify which of the data points were obtained from the same
shot, 1t was only possible to determine the source widths for each shot depth.
For the pulse-width measure used by Ricker, the value of the parameter ¢ /1n
(2.53) is approximately unity. Figure 2.11 shows a plot of the data from fig-
ure 2.10, with the source width subtracted, compared to a straight line with a
slope of 1/Q = 1/32. The data points for the geophone at 622 feet tend to be
above the curve; this can be explained by attenuation decreasing with depth.
This result implies that both Ricker’s data and the data of McDonal et al. are
consistent with the linear constant Q model, and both give the same value for
Q. This d4s particularly significant 1in 1ight of the fact that they inter-
preted their data very differently, and that neither of them considered a con-
stant or near constant linear attenuation in the interpretation of their data.
The apparent conflict between the observations of Ricker [1953] and McDonal et
al. [1958] has been noted by many authors including Gladwin and Stacey [1974],
Reiter and Monfort [1977], and Bless and Ahrens [1977].

Comparison with Nearly Constant @Q Theories

Lomnitz [1856] investigated the transient creep in rocks at low stress
levels. He found that the shear strain resulting from a step in applied stress
could be described to within the experimental error with a creep function of

the form

wWt) = %—[1 + g In(1+at)] (2.56)
0

where a is a frequency much greater than the sample rate or the time resolu-
tion of the experiment. He found that the fit to the data was insensitive to
the value of a, as long as it was large. For Q greater than about 20, (2.56)
is approximately equal to the CQ creep function (2.14). By using the FTirst two
terms from the MacLaurin series expansion of the exponential function, (2.14)

may be rewritten

(t) ﬁ- expl 2y 1n(-t-1)] ~ -M-l—[l ‘ ;g- 1n[-t-t-”
0 0 0
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When t_ <<{ t this 1s approximately equal to

0
1 2 t )
(t) = |\-J|F|:1 + ;aln [1+-t-a']:| (2.57)

Later, Lomnitz [1957,1962] used his creep law and the superposition principle
to derive a model for wave attenuation with Q approximately independent of
frequency for large Q. Pandit and Savage [1973] measured Q for several rock
samples with Q ranging from 30 to 300 and found good agreement between values
determined at sonic frequencies and those derived from transient creep meas-

urements over several tens of seconds.

Kolsky [1956] did experiments on the propagation of ultrasonic pulses 1in
polymers and found the pulse width to be proportional to traveltime. To model
his data, he used a viscoelastic model with Q approximately independent of

frequency and with a phase velocity that varied according to

ic:— - 1+l61n9—— (2.58)
0 r “0

Equation (2.58) follows from (2.43) when the condition given 1in (2.44) s
satisfied. Futterman [1962] arrived at the same formula by imposing causality

on the wave pulse and assuming the parameter @ in {(2.29) to be exactly pro-

portional to frequency over a restricted range of frequencies.

There are two difficulties inherent in Futterman's approach, which neces-
sitate 1Timits on the range where Q is nearly constant, at both low and high
frequencies. Collins and Lee [1956] showed that the assumption of a nonzero
1imit for the phase velocity as freguency approaches zero, implies that Q must
approach infinity at zero frequency. Futterman’'s formulation was based on a
finite value of the refractive index at zero frequency and is thus 1ncompati-
ble with constant Q, where the phase velocity has no nonzero 1imit as fre-
quency approaches zero. It can also be shown [e.g. Azimi et al. 1968], that «
proportional to fregquency at high frequencies leads to a violation of causal-
ity.
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It appears that these limitations, which are peculiar to Futterman’s
approach, have led many workers to assume that a physically realizable formu-
lTation with Q exactly independent of frequency was not possible. Liu et al.
[1976] and Kanamori and Anderson [1977] have used viscoelastic distributions
to derive dispersion relations of the form shown in equation (2.58). Viscoe-
lastic density functions are discussed in appendix A, and it is shown how the

constant Q model can be derived from distributions of dashpots and springs.

Discussion

Of the two assumptions that provide the basis for the constant Q model,
linearity 1s the more fundamental, and it has also been more frequently ques-
tioned in the literature than the frequency-independence of Q. Nonlinear,
rate-independent friction was originally proposed [e.g. Born, 19417 to explain
the frequency-independence of Q, since at that time no simple linear models
were available that could account for this observation. As summarized 1in table
2.1, all of the nonlinear friction mechanisms that have been proposed have
several features 1in common. These include the dependence of the effective
elastic moduli on strain amplitude, the proportionality of 1/Q to strain at
Tow ampiitudes, the frequency-independence of both Q and the moduli, the dis-
tortion of waveforms and cusped stress-strain loops, and the absence of any
transient creep or relaxation. Mindlin and Deresiewicz [1953] analyzed the
losses due to friction between spheres in contact., and found the attenuation
to be proportional to amplitude at low amplitudes. White [1966] claimed that
the introduction of static friction into this model had the effect of making Q
independent of amplitude. This claim cannot be correct since it may be shown
[Mavko, 1978] that static friction cannot increase the 1loss. Walsh [1966]
considered the siiding across barely closed elliptical cracks and found the
loss for closed cracks with zero normal force to be independent of amplitude.
However, this model cannot, as shown by Savage [1969], explain loss indepen-
dent of amplitude for the whole rock. The required distributions of elliptical
cracks would imply that the effective elastic moduli of the rock, as functions
of confining pressure, are discontinuous at all values of confining pressure.
Mavke [1978] has considered a more general case of non-elliptical cracks and
found the attenuation to depend on amplitude in much the same manner as in the

contact sphere model of Mindlin and Deresiewicz. A1l of the above models
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feature a decrease in the effective moduli with strain amplitude due to the
increase in area of the sliding surfaces. Decrease of both velocity and Q,
similar to what would be expected on the basis of the above models, has been
observed in laboratory studies of rocks, [Gordon and Davis, 1958; Winkler et
6 5

al., 19791, but only at strains greater than about 10 ° to 10 °. At lower

strains both Q and wave velocities are found to be independent of amplitudes.

The dependence of the wave velocity on frequency is such that it is dif-
ficult to separate it from the effects of spatial heterogeneities. There is,
however, an increasing amount of evidence 1in support of +the freguency-
dependence of the elastic moduli. Seismic models for the whole earth show
much improved agreement with the free oscillation data, when the frequency-
dependence of the elastic moduli 1s taken into account [Anderson et atl.,
1977]. It is also well established that for many rocks the elastic moduli
derived from ultrasonic pulse measurements are significantly greater than the
moduli derived from low-frequency deformation experiments [Simmons and Brace,
1965]. This difference 1s generally larger for lossy materials. Gretner
[1961] analyzed well logging data from several oil wells in Canada and found
statistically significant differences between observed traveltimes from sur-
face sources to geophones in wells and traveltimes predicted on the basis of
high-frequency continuous velocity 1logs. Strick [1971] showed that these
differences could be explained by the dispersion associated with linear

attenuation with Q nearly independent of frequency.

Brennan and Stacey [1977] measured both Q and elastic moduli in low-
frequency deformation experiments, at strains of 10_6, and found the moduli to
vary with frequency as predicted by linearity. The stress-strain 1loops were
elliptical although earlier experiments at larger amplitudes showed cusped

stress-strain loops [McKavanagh and Stacey, 1974].

Because the principle of superposition does not apply to the nontinear
solid friction models, it is difficult to predict their effects on the propa-
gation of transient stress pulses. Walsh [1966] pointed out that the Jlosses
due to friction cannot be described through the use of complex moduli although
this 1s frequently attempted [e.g. Johnston and Toksoz, 1977]. It 1s easily
shown [e.g. Gladwin and Stacey, 1974] that the use of complex frequency-

independent moduli leads to acausal waveforms that arrive before they are
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excited. Savage and Hasegawa [1967] used the stress-strain hysteresis loops
implied by several different friction models, to model wave propagation. The
results showed significant amounts of distortion, which have never been

observed experimentally.

From these observations 1t may be concluded that at strain amplitudes of
interest in seismology, the propagation and attenuation of waves are dominated
by linear effects, with some nonlinear effects showing up at strains of 10-5
or greater. This amplitude corresponds to a stress amplitude of 5 bars, since
the ambient seismic noise level i1s on the order of 10_11 in strain, and stu-
dies of earthquake source mechanisms indicate stress changes of 1 - 100 bars
[Hanks, 1977]; it is evident that nonlinear effects can only be significant

very near the source.

While a good case can be made for the 1linearity of the absorption of
seismic energy at low amplitudes, no such simple answer can be given to the
question of the frequency-dependence of the attenuation. Theoretical models
of specific attenuation mechanisms are often formulated inh terms of relaxation
times, each of which implies a creep function that is a decaying exponential.
A model that has a single relaxation time is often referred to as the standard
l1inear solid and has Q proportional and inversely proportional to frequency at
high and low frequencies, respectively. Cases where inertial effects may play
a role, such as in the flow of low-viscosity fluids [Mavko and WNur, 19797,
feature even stronger variation of attenuation with frequency. It may be
shown [Kjartansson, 1978] that 1n materials with sharply defined hetero-
geneities (e.g. grain boundaries or pores), that absorption due to processes
controlled by diffusion, such as phase transformations or thermal relaxation,
leads to @ proportional to w% and u-% at high and low freguencies, even for

uniform distributions of identical pores or crystals.

For these types of mechanisms, the approximate frequency-independence of
Q that is observed indicates distributions of time constants, associated with
the individual absorbing elements. It may be shown, for example, that the fre-
quency at which maximum absorption occurs for mechanisms involving the diffu-
sion of heat, is inversely proportional to the square of the minimum dimension
of the 1inhomogeneities involved. The empirical observation that Q, 1n solids,

varies much more slowly than even the square root of frequency, 1is thus an
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expression of the statistical nature of the inhomogeneities. It 1s interest-
ing that dielectric losses 1n solids show the same type of frequency-

dependence as do the energy losses in stress waves [Jonscher, 19771.

While Q 1s probably not strictly independent of frequency, there 1s no
reason to believe that any of the band-limited near-constant Q theories better
approximate the wave propagation in real materials than the constant Q model.
Therefore, nothing 1s gained 1n return for the mathematical complexity and
potential 1nconsistency in using, for example, the absorption band model of
Liu et al. [1976].

Strick [1967] obtained a transfer function for wave propagation, of which
the constant Q s a special case. He rejected the CQ case, however, on the
basis that the lack of an upper bound for the phase velocity was in violation
of causality. Strick’s three-parameter model 1s equivalent to the CQ model,
with an additional time delay applied to the waveform. Strick [1970] computed
waveforms for his models, and found that the detectable onset of the signal
always arrived significantly later than the applied time shift. He termed
this delay "pedestal” and attributed to 1t significance that has been subject
to some controversy. For the CQ case, the "pedestal" arrives when the source
is excited. Minster [1978b] argued that the presence of the "pedestal" was an
indication of the need for a high-frequency cutoff of the type built into the
model of Liu et al. This "pedestal" controversy points to a Timitation shared
by all of continuum mechanics; no tont1nuum model, dincluding the CQ model, can
have any significance at wavelengths shorter than the -molecular separation ner
at periods longer than the age of the universe. This covers approximately 32
orders of magnitude 1n frequency, which for a Q of 100 implies a change 1in
velocity of about 26X. The possibility that some “calculable" energy might
arrive 26% earlier than any detectable energy, is hardly a sufficient reason
to introduce a high-frequency cutoff. Calculable values of physical parame-
ters, outside the observable range are common in other fields, such as in
solutions to the diffusion equation and 1in statistics. Minster [1978b] and
Lundquist [1977] suggest that the cutoff should be at periods between 0.1 and
1 seconds for the mantle. Such cutoffs have never been observed for any of the
rocks that have been studied in the laboratory, where the range of frequencies

extends up to about one megahertz.
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Lomnitz's [1957] attenuation model has often been criticized [Kogan,
1866; Liu et al., 1976; Kanamori and Anderson, 1977] on the basis that the
lack of an upper bound for the transient creep would not permit mountains or
large-scale gravity anomaltes to last through geologic time. Since the Lom-
nitz creep function is practically equivalent to the constant Q creep function
for large values of time and Q, this criticism applies equally to the constant
Q model. However, it does not pass the test of substituting numbers into the
expressions (2.56) or (2.14). For example, for a material with a Q of 100,
the strain that results from the application of a unit stress is only about
33% larger over a period of one billion years, than for the first millisecond
of applied stress. Thus, neither the constant Q theory, nor any of the NCQ
theories can explain the large strains required by plate tectonics. The fact
that brittlie deformation only takes place in the uppermost part of the crust,
with the exception of localized areas of unusually rapid tectonic activity,
may indicate that over geologic time most of the earth deforms as a viscous
fluid with Q@ for shear near =zero. The assumption, implicit in the band-
Timited NCQ model of Liu et al. [1976], that Q approaches infinity outside the
range of observations, is thus particularly inappropriate for low-frequency

shear deformations in the mantile.

Conclusions

Contrary to what has often been assumed in the past, it 1is possible to
formulate a description of wave propagation and attenuation with Q exactly
independent of frequency, that 1s both 1inear and causal. The wave propaga-
tion properties of materials can be completely specified by only two parame-
ters, for example, Q and phase velocity, at an arbitrary reference frequency.
This simpiicity makes 1t practical to derive exact expressions describing, 1in
the frequency-domain, the wave propagation for any positive value of Q. The
dispersion that accompanies any linear energy absorption leads to a propaga-
tion velocity of any transient disturbance that is not only a function of the
material, but also of the past history of the wave. Review of available data
indicates that the assumption of 1inearity 1s well justified for seismic
waves, but it is likely that Q is weakly dependent on frequency. There is,
however, no indication that any of the NCQ theories that we have discussed

provide a better description of +the attenuation in actual rocks than the

constant Q theory does.



