Chapter IV
Wave Theory Derivation of the
Lateral Velocity Equations

This chapter develops a velocity estimation theory for two-
dimensional media based on the downward continuation of seismic data
with the wave equation. Such a theory 1s advantageous since 1t provides
a mathematical framework for velocity estimation 1in diffracting or dip-
ping earth models. The first two sections discuss a general seismic
imaging principle for stratified media and characterize it mathemati-
cally in what is known as the double-square-root equation. The conven-
tional processing sequence of velocity estimation, stacking, and migra-
tion can then be represented by some part of or an approximation to the
double square root equation. In the following section the conventional
hyperbolic travel time equation 1s derived for a laterally dinvariant
media from the double square root equation. 1In the final section, the
double square root equation is rewritten for laterally varying media and
the effects of the lateral velocity changes on the different order terms
of the double square root equation are examined. The zeroth order term
(1.e. small dip) 1leads to a traveltime equation which 1s identical to

the traveltime equation developed in the Chapter Il [equation {2.4)].

4.1. Seismic imaging principies

Imaging the earth with surface-recorded seismic reflection data
requires two basic ingredients, a downward-continuation operator and an
imaging principle. The imaging principle is needed to know when to stop
the downward-continuation process. There are three wain imaging prin-
ciples of use in reflection seismology which apply to the following
experiments: 1) one surface source and many receivers, 2) many surface
sources and many receivers, and 3) a source distribution at depth and
many surface receivers. The typical reflection seismology experiment
falls into the second category and i1ts 1imaging principle 1s based on the
downward continuation of sources and receivers. This is: a reflector

exists where upgoing energy 1s received after zero traveltime from the
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source to the receiver. This implies, of course, that the source and
receiver have zero offset and are located at the reflector. Theoreti-
cally, the entire reflecting structure can be mapped by placing a
source-receiver pair at every point in the subsurface and observing the

upgoing energy arriving at t=0.

For the case of a two-dimensional medium and letting the shot and
geophone lecations be (s.zs) and (g.zg). the above imaging principle can
be described as a mapping of the wavefield P from

P(s,zs=0,g.zg=0,t) to P(s=g,zs=zg,t=0)‘

With the following definitions of midpoint and half-offset,

_ {g+s) _ {g-s)
y = =5 and h = 225 (4.1)

the imaging principle can be written as the following mapping

P(y.zs=0,h,zg=0,t) to P(y,zs=zg,h=0,t=0)

Figure 4.1 shows the Tlocation of the seismic traces 1in shot-
geophone space for a typical marine experiment and also defines the
nomenclature for gathers and sections used throughout the remainder of
this thesis. We are considering a two-dimensional experiment, so the
coordinates s and g both refer to locations along the traverse 1line.
The y-axis represents the zero-offset (h=0) section. The imaging princi-
ple tells us that any energy lying along this axis at zero traveltime

must be from a reflector at the source-receiver depth.

In order to use the imaging principle it is necessary to find the
wavefield for +the sources and receivers at non-zero depth. To help do

this we have the full wave equations in two space-dimensions

P+ P s ot p (4.2a)

3 tt
g°g vi(g.z))

and
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Figure 4.1. Location of seismic traces 1in shot-geophone (s,g)
space for a typical marine experiment. Each dot in the grid represents
a4 seismic trace for a particular shot-receiver location. The time axis
can be considered to be into the page. The figure also shows the loca-
tion of the midpoint [y = (g + s)/2] and half-offset [h = (g - s)/2]
axes. The stippled regions define common-shot (CS), common-geophone
(CG), and common-midpoint (CMP) gathers and a common-offset (CO) sec-
tion. The figure at the top depicts some raypaths off a filat reflector
for the stippled common-shot gather. The focused earth image 1is found
on the zero-offset section at t=0 for every z-level.

P+ p - —1 (4.2b)

s's v2(s.z ) it
S
To obtain the imaged section, first downward continue the geophones
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to some Az using some form of equation (4.1a) on the common-shot gath-
ers. Invoking reciprocity to justify the downward continuation of the
sources, we next use an appropriate form of equation (4.2b) to downward
continue the shots to Az using the common-geophone gathers. At each 2z-
level the energy arriving at zero travel time along the zero-offset axis
is picked off to form the migrated section. The process 1is then contin-
ued down to the next z-level and so forth. Neglecting any error induced
by approximations to the wave equation and if the correct medium velo-
city 1s used in the downward continuation, then theoretically all af the

primary energy will migrate to the zero-offset, zero-traveltime plane.

4.2. The double-square-root equation

Equations [4.2(a,b)] cannot be used in their exact form to downward
cantinue the sources and recelvers since they are second order in 2z and
by the nature of the experiment there exists only one boundary condition
in that dimension. The full wave equation, however, can be split into
two parts, one for upgoing waves and one for downgoing waves (Claerbout,
1976). An exact form of the one-way wave equations can be obtained by
assuming & laterally invariant velocity and Fourier transforming equa-
tions [4.2(a,b)] with respect to s, g, and t to obtain the second-order

ordinary differential equations

) ) .
r R 2
Pz 2z =T viz ) ) kg P
gg A g.‘ -
_r ‘12 -
p . - @ | |e
z 2 viz ) 5
§°s s ]

where ks' k . and w are the frequency-domain counterparts of s, g, and

g
t respectively and P = P(ks.zs.kg.zg.w). For constant velocity media,
these equations have solutions
%
Tw ng ‘
P(...zg.) = P(,.,.0,) exp vl R b 2, (4.3a)
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2
iw vk
P(.zs...) = P(,0,..) exp = 1 - {——J F3 {4.3b)

Thus, to move both the sources and receivers to depth z, we first apply
equation (4.3a) to the surface common-shot gathers. Then, applying
equatiaon {4.3b) to this result yields

L En
- el ()
P(ks,z,kg,z,w) = P(ks,O,kg,D,w) exp { v [ 1-G + |1-8§ 2 »4.4)
where
vk vks
G = and § & —
w

G and S can be interpreted physically as the sine of the raypath angle
with respect to the vertical at the geophone and shot Tocation respec-
tively (Figure 4.2). Equation {(4.4) is known as the double-square-root
equation for constant velocity media. For a stratified velocity struc-

ture, the double-square-root equation can be written as

e ) )] (4.5

In section 4.4 a more general form for laterallyk varying media is

o
=)

|

(=%
N

derived. Equations (4.4) and (4.5) are the exact downward-continuation
equations and provide a basis on which to compare various approximations

to the one-way wave equations.

Since velocity estimation and migration are typically done 1in
midpoint-offset space it is helpful to rewrite equation (4.5) in {(y.h)-
space defined by equation (4.1). Letting P’ be the wavefield in the y.h

coordinate system we have

P(s.g) = P'(y.h)

since 1t is the same wavefield regardiess of coordinate systems. Using
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Figure 4.2. Geometry showing a raypath for a shot-receiver dis-
tance of f = 2h and reflecting off an interface with dip «. 8 is
referred to as the offset angle. The quantities G and $ in equation
(4.4) are given by sin(y_ ) and sin(y_), respectively. Note that a=0
impiies zero dip and 8=0 1mpq1es zero offset.

the chain rule for partial differentiation gives

k k +k
v g v ( y+ h)

G = e T =Y+ H (4.6a)

and

vk v (ky-kh)

S = i o =Y -H (4.6b)

where ky and k_ are the midpoint and offset spatial frequencies respec-

VE vk
tively, Y = E;l‘ and H = e " Inserting these expressions into equa-
w

tion (4.5) and dropping the prime from P we obtain the double-square-

root equation in midpoint-offset space
dP 7 2 g 2 %
s ¥ - - -
FRIE) [1 {Y+H) ] - [1 {Y-H) } P . {(4.7)

Y and H are quantities which can be related to the dip and offset angle
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in a constant-velocity medium. Referring to Figure 4.2, S and G can be

expressed in terms of the dip angle, «, and the offset angle, B, as

G = sin 79 = sin{f+a)
and
S = sin v, = -sin{f-e)
Using equations (4.6a,b) yields
Y = sin « cos B (4.8a)
and
H = sin 8 cos a (4.8b)

Thus, for zero offset (8 = 0), Y 1is given by the sine of the dip angle
and for zero dip (Y=0), H is given by the sine of the offset angle.

Midpoint-offset space is the preferred coordinate system to use 1n
conventional processing. There are inherent difficulties with this
coordinate system, however, since unless either Y or H equals zero, the
effects of the midpoint and offset derivatives implied by Y and H cannot
be uncoupled from equation (4.7). This means that ‘common-offset sec-
tions theoretically cannot be migrated independently of one another
unless H is equal to zero. Doherty and Claerbout (1976) recognized this
fact and first put the wavefield into a normal moveout corrected coordi-
nate system to get H as small as possible. However, wunless Y -equals

zero, the NMO correction is not independent of offset.

One possible means of dealing with this problem is to approximate
equation (4.7) by expanding the square roots around ¥ or H equal to
some constant. Since wide offsets (large H) are of more importance than
large dips 1t 1s advantageous to expand both of the square roots about
zero dip. Performing a Taylor-series expansiaon and retaining terms to

second order gives
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2
Fw 2.5 Y
W(zy | HD) (1 - #2)¥/2 P (4.9)

dP
dz

Equation (4.9) is 1ike a 15° approximation {in dip) (Claerbout, 1976) to
the double-square-root equation. As will be seen in the next section,
the first term within the brackets governs conventional normal moveout
correction and stack. The second term is an offset dependent migration
term, so we have not completely succeeded in decoupling the midpoint and
offset dimensions (nor can we ever). We can, however, use the offset
dependence to our advantage in preprocessing the data before velocity
estimation and stack, as will be seen in section 4.4. One final point
to make about equation (4.3) is that it is independent of the first-
order dip (Yl) term. This will not be the case for laterally varying

media.

4.3. \lelocity estimation 1in laterally invariant media from the double-
square-root equation

Conventional velocity estimation 1s based on a zero dip assumption

and the traveltime formula

2oL 42, [_z_p_]z
v

where to is the zero-offset two-way traveltime, h 18 half-offset, and v

is the RMS velocity to the interface.

Fram equation (4.8a), zero dip in a 1laterally homogeneous media

impiies Y = 0 which, when substitued into equation (4.7) or (4.9), gives
i L

P = - 352 (1 - HH%p (4.10)

Applying equation (4.10) to a CMP gather wil1l focus the hyperbolic

events at zero offset and zero traveltime. To focus the hyperbolae to

their tops {(i.e. to). we need only add a time retardation term of the
form (Claerbout, 1976)
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21w

to yield

~N

i

LL [(1 - W2y . 1] P. (4.11)

The application of equation (4.11) represents the exact frequency-domain
expression of normal moveout and stack. The exact space-time domain
expression for equation (4.10) is a differential equation in h, 2z, and
t. Clearly, applying the NMO-correction formula 1n equation (4.9) and
then stacking can be a crude approximation to applying equatien (4.11),

especially over a large range of offsets.

To see that equation {(4.11) does indeed represent the normal
moveout correction, an approximate expression can be found in the
space-time domain by making a statdonary phase approximation to the
inverse Fourier transform of the constant-velocity solution of equation
(4.10):

2
-]
plh,z,t) = Jf exp §- 2w 1 - {—lq + E%E 2 exp (-ikhh + det) dw dkh
- o0

Setting the derivatives of the exponents with respect to k, and @ equal

h
to zero gives
%
2
vk
2z _ 2e - h
oty 1 LZIJ (4.12a)
h
and
%
2
vk
22 h
;T?:?;T = 1 - &E:J (4.12b)

where to has been substituted for 2z/v. Combining eguations (4.12a) and
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(4.12b) to eliminate w and kh yields
!,.é
2
t = [t2+ [—z—h—]] -t {4.13)
] \ o
which is the normal moveout correction time. Consider now the case

where the medium velocity 4s constant but the wavefield 1s laterally
varying, such as a dipping bed below a constant velocity medium. The

migration part of equation (4.9)

T Y2
- — ———————— [ (4.14)
v (1 - H2)3/2

[~ %
-

[~-9
N

1s now non-zero and thus presents a dilemma as to how to handle the
offset derivatives contained 1n H in the migration. Clearly, we could
do a total imaging by downward continuing the data in (y,h)-space and
computing all of the necessary derivatives but this would be very expen-
sive. It would be sconomically advantageous to decouple the y- and h-
coordinates by approximating H with some ﬁ which did not contain any
offset derivatives. Such an approximation, as discussed by Yilmaz
(1979), is

o

t A

i
==

iR
roj<

a.

For & constant velocity medium, where t2 = 4(22+h2)/v2. dt/dh = 4h/vzt
and thus,

s 2h
T ovt

(4.15)
Al
Note that H = 0 still impiies zero offset as with the exact H.

Making this approximation for the second occurrence of H 1in egqua-

tion (4.9), gives

2
dP Tw 2.4 Y
— = em—— |2(1 - H )z = ee——— s | (4.16)
dz v(z) (1 - ﬁ2)3/2
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The NMO part of equation (4.16) sti11 contains H and thus applying it
first would render the offset dependence of the migration academic as we
would now have a stacked section. Hence, prior to velocity estimation
and stacking we first perform a partial migration on the common-offset

sections to take care of the non-zero-offset part of the migratian.

The difference between the zero-offset migration [eguation (4.14)

A

with H = 0] and non-zero-offset migrations [equation {(4.14) with H = H]
is given by

dz v A2 3/?

dP = ‘10’ 1 _ 1 YZP (4'17)
(1-H7)

and is called the Deviation operator by Yilmaz (1979): it s also
related to the so called Devilish operator (Judson, et al., 1378). To
understand 1ts effect consider the model shown 1in Figure 4.3a. The
model consists of a flat and dipping interface underlying & constant-
velocity medium. At some midpoint. Yor the zero-offset traveltimes to
each 1interface are identical, but because of the differing dips they
will appear with different apparent velocities on the common-midpoint
gather (Figure 4.3b). This presents an ambiguity as to which velocity
to stack them with as only one event can be enhanced. If equation
(4.17) 1s applied to the common-offset sections first, however, the cur-
vature of the dipping event will 1increase slightly to match that of ‘the
non-dipping event, the subsequent velocity analysis will yield the true

media velocity., and the stack will enhance both events.

Equation (4.17) contains a velocity, which implies that a velocity
estimation must be done prior to the common-offset migrations. It was
shown by Yiimaz (1979) that this operator is not very sensitive to velo-
city because so 1ittle 1s done in the migration and hence even a gross
velocity estimate will suffice to enhance the subsequent velocity esti-

mation and stack.

In summary, the process of normal moveout correction and stacking
can be characterized as a space-time approximation to the zero dip term
of the double-square-root equation given in (4.11). The conventional

velocity estimation formula can be derived from a stationary-phase
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Figure 4.3, Effect of partially migrating common-offset sections
prior to stack. a) Model which consists of two intersecting inter-
faces, on flat and one dipping. At midpoint Yo the zero offset arrival
time dis identical to each event. b) Common-midpoint gather at y .
Because the events have different dips they appear to have different
apparent velocities (see Levin, 1971). «¢) Common-midpoint gather at Yg
after appiying equation (4.17}).

approximation to the inverse Fourier transform of the stacking operator.
If the wavefield is laterally invariant (fixed h, variable y) the velo-
city estimation and stack can be improved by first performing a partial

migration on the common-offset sections using equation (4.17).
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4.4. lateral velocity estimation from the double-square-root equation

In this section the double-square-root equation is generalized to
laterally wvarying media and a lateral velocity traveltime equation is
derived. Moreover, we will again consider the effects of the higher-
order dip terms and how they can be 1incorporated into the velocity esti-

mation procedure.

For the laterally varying case where the velocity is a function of
the shot and geophone coordinates, the double-square-root equation can

be written in operational form as

2 2
3] 8
P 1,19 A, 1=
7 - Tw 5 + [w J + >+ [; ] P {(4.18)
Y v
g s

where v = v(g,z), v_ = v(s,z), 8 =90/ , and 8 = 8/8 . Or, express-
g S g g S s
ing @ and 8_ in terms of @ and 8, _:
g s N h

P, = - {[Mg . (Y+H)2:|1/2 . [MS . (Y-H)Z]% } P (4.19)

where Y and H are now given by

i i)
: Y s _h
voE 2w H 2w
and

1 1
M E e M 2 e

g VZ s v2

g s

Again, equation (4.1%) 1is not easily implemented in y,h-space because of
the coupling of the midpoint and offset derivatives within each square
root. Equation (4.19) is put in a more useful form by expanding the

square roots around Y = 0, giving
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IR SO I
3/2 3/2] 2
[M " HZ] [M " HZ}
g s

Egquation (4.20) can be considered as the lateral velocity 15° approxima-

(4.20)

tion to the double-square-root equation. Note that Y = 0 no longer
implies zero dip in depth because of - the 1lateral velocity changes.
Instead 1t 1implies P; = 0, which means that the time integral of the
wavefield is constant in the midpoint direction. Comparing equation
(4.20) with its stratified velocity analog [equation (4.9)] shows that

the former has an extra term depending on Yl.

Equation (4.20) will be considered in three parts, corresponding to
the terms depending on YU. Yl, and Yz. The following mathematics 1is
somewhat cumbersome and so a brief description of the final results s
helpful. First, neglecting the Y1 and Y2 terms will lead to a lateral
velocity analog of normal wmoveout correction and stacking and a
corresponding traveltime formula for velocity estimation from surface
data. The most important term in the traveltime formula representing the
lateral velocity variation will depend on the second lateral derivative
of M. The inclusion of the Y1 term will help account for the fact that
even though a reflecting interface may be flat in z, it will appear as a
dipping bed on a time section 1f the media Qeloc1ty varies Tlaterally.
This +term depends upon the first derivative of M. Lastly, the migra-
tion term, Yz, will enter in a way similar to the lateraliy invariant

case.

0
Consider first the Y terms in -equation {(4.20). Recalling how
this term in equation (4.9) led to the conventional velocity estimation
equation, we expect that 1t will also lead to the first-order velocity

estimation equation in laterally varying media.

Expanding MS and Mg in & second-order Taylor series in the midpoint
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direction, vy,

h2
M = M+ hM' + o— M" (4.21a)
g 2
h2
o - 1 — u
Ms ~ M hM' + 3 M (4.21b)
oM aM?
where M = M(y), M!' = By and M" = L the first term of equation
dy
(4.20) becomes
5 %
1 2 n 2 § h 2 ”" 2
PZ = =Tw (M + hM'" + — M" 4+ H + M~ hM' 4+ — M" 4 H P (4.22)

2 2 2 :
hM!' 4+ g— Mo hM! - 2— M
P = ~7fwR L ———— ] 4 1] ¢ — P. (4.23)
F4 RZ RZ

2
Now, far R2 >> + hM' ¢ %. M", equation (4.23) can be approximated by
2 2 )
] —— ] )
hME v B [TMT g
Pz = -jwR {1 + > - 2 P+
2R 8R
J
[
2 W2
- ! — "
ShM s By hM! + =M )
2
1 + 2 - 2 P
2R 8R
J
ar
2 (2
P, = -iuR {2 + ‘hE Mo - M g } P (4.24)
2R 2R



Equation (4.24) 4is the lateral velocity analog of equation {4.10).

As with the zero-dip term of the constant velocity double-square-
root equation, equation (4.24) can also be dpproximated in the space-
time domain to give a traveltime equation useful for velocity estima-
tion. Since the method of stationary phase is very cumbersome in this
case we will use a different method here, whereby we will first compute
the two-way phase traveltime and then convert this to a two-way group

traveltime.

To obtain the phase time we first approximate the solution to equa-
tion (4.24) as

- fwt
P(z) = P(0) exp P,
where
L YV
y4 ]
t = S Rlz+ 2 S x MO,
P 0 R ar?

1s the vertical phase time and x is the half-offset as a function of
depth as shown in Figure 4.4. In order to make the integral tractable
we again assume a straight raypath and change the integration variable

from z to x using x = z tan #, giving

2
x n
t = R J'h 2 + E_M - XZ(M.)Z dx
p tan 8 7 r2 ar?
Performing the integration yields
3 2
t = taﬁ 5 |2n s —ﬁ§~ o (M % : (4.25)
P 6R 2R

In order to get an expression completely in the space-time domain

- 66 -



Figure 4.4. Relation between vertical phase and group time. Taken
from Schultz and Claerbout (1878). The phase time, .t , is given by the
traveltime of the wavefront, which is shown at t=0, to? travel down to
the reflector and return to the surface location g. The group time, t,
is the traveltime for a spherical spreading source which originates at
the surface at the location s to reflect off the interface and return to
the l1scation g. The angle the wavefront makes with the surface is @ and
for the laterally varying case 1is approximated by sin # = pv(y).

it 1s necessary to approximate the H which 1s 1in R. To do this we-
recognize +that the phase time corresponds to the traveltime of a wave-
front. With the straight ray approximation the wavefront is planar and
its arrival can be simulated by stacking the event along a linear

moveout trajectory of slope p
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t' = t + 2ph . (4.26)

Equation (4.26) implies that

For a slant stack ah, = 0 and so

3e - -1p . (4.27)

Substituting equation (4.27) for H in (4.25) gives

L
e pzvz)2 heyv2z . (M‘)2
v BT T N B " 2 T
P 6(1 - p°v°) 2M(1 - pv%)
where v is the wvelocity at the midpoint. Now recognizing that
L
(1 - p2v2)z = cos #, where @ is the angle the wavefront makes with the

horizontal and converting the phase time to the group time, t, with

t
t - p

c0520

(Schultz and Claerbout, 1978) we obtain

2 2
t cos & = 2z + h > M - —Lﬂlli— (4.28)
6cos @ 2Mcos @

We now make the following substitutions for the first two occurrences of

cos @ in equation (4.28):

2
L . <1+tan29)=[1+-"-—]
2 2
cos @ z
and approximate the last occurrence with 1. Squaring equation (4.28)
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and ignoring the square and cross terms of M" and M'2

tz =

Equation (4.29) is the

same as

the

traveltime

equat

gives

2 |2
4 (h% 4+ 2%) {M . %—-[nu ; igﬁl_l} :

(4.29)

ion derived in

Chapter Il using a ray theory approach except that the latter is written

1

N

in terms of w = M°“.

unwieldy,

The

number of

approximations

lateral velocity variations on the traveltime equations.

Consider now the effect of the Y1

city
equation (4.20) is

P
z

H

term of equation (4.20) on

estimation and imaging in laterally varying areas.

H

—dw -
2 5 Z %
(Mg+H ) (MS+H )

YP .

. _ _ ~ 2
where again Y = ay/zw. H = ah/zu. Mg = 1/v {g), and Ms

that for M =
g

with the Yo term, we will expand Ms and Mg around M =

tions (4.2la,b) giving

made may seem

however, what we seek are only the first-order effects of the

velo-

The Y1 part of

(4.30)

= 1/v2(s). Note

Ms, the coefficient of the Yl term vanishes exactly. As
M(y)

using equa-

S H - - L = v P . (4.31)
(M+H") *® h2 ¢ h2 k
hM "o M" -hM e MY
2 2
2 1+ 2
M+ H M+ H
Using the square-root approximation (1+>()_’2 =1 - X/2, equation (4.31)
becomes
P = -llﬂgﬂg75 Y P. (4.32)
z (M+H")
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It is interesting to note that the coefficient of Y in equation {4.32)
depends only on the first derivative of M, whereas the coefficient of

the Y0 term in equation (4.24) depends on M and M’ as well.

To understand the physical significance of equation {4.32), assume
M >> H2 and rewrite it using the appropriate expressions for Y:

-1hM' ah

4 ZM3/2‘ 2w Y

(4.33)

Equation (4.33) is like a shifting term in (y.z)-space, however, it also
contains an offset derivative. To apply equation (4.33) to a common-
offset section, we must again approximate H with some ﬁ. Using the
approximation given in equation (4.15) and writing M and M’ 1in terms of

v, we obtain the result

P = p (4.34)

where v' = 9v/9y.

Equation {(4.34) can be interpreted by considering different
common-offset sections over a point scatterer in a medium where the
velocity increases linearly in the midpoint direction. Figure 4.5 shows
three different common-offset sections for such a model. Because of the
lateral gradient, the midpoint location of the minimum traveltime is not
directly above the point scatterer, nor is it in the same lateral posi-
tion for the different common-offset sections. In fact, the minimunm
traveltime location moves in the direction of the velocity gradient as

the offset is increased.

It is easily verified that the shift implied in equation (4.34)
is in the correct direction. Again consider Figure 4.5. The velocity
increases in the +y direction, so v' is positive, and thus so 1s the
coefficient of Py in equation (4.34). Denoting this coefficient as ¢,
the solution to equation {(4.34) is given by

P = P(cz + y)
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fFigure 4.5. Three common-offset sections (h = 0, 2000, and 4000
ft.) across a point scatterer in a medium with a horizontal velocity
gradient to illustrate the physical significance of equation (4.26).
The velocity 1ncreases from 1left to right with a gradient of 1.0
ft/sec/ft. The point scatterer is located at midpoint #50 and at a
depth of 5000 feet. The midpoint spacing 1s 100 feet and the velocity
at midpoint #50 is 11300 ft/sec. Note that the minimum traveltime moves
in the direction of the lateral gradient as the offset is increased.
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Hence, as z incredases, y must decrease for the argument to remain con-
stant; which 1is in the direction of the zero-offset "hyperbola" top.
Equation {4.34) can be used to shift the common-offset sections prior to
velocity estimation and stack. This 1s a process, however, that would

require at least two iterations since v is not known a priori.
The Y2 term enters 1in a similar way as in the laterally i1nvariant

case. Copying this term from equation (4.20) we have

M M 2
P, = -iw 4 > !

+ -— P (4.3%)
2 3/2 2 3/2
(M + H ] [H + H ]
g s

2
For the sake of simplicity, Mg and Ms in the denominator can be replaced

with M = M(y). Now expanding Mg and MS in the numerator in second-order

Taylor series [see equation {4.21)] yields

2
e |
—_— Y P (4.36)
(M + H2)3/2

P, = -iw

The application of equation (4.36) represents a full migration 1n the
midpoint dimension using all offsets. If we want to only do a complete
migration on the common-midpoint stack, then we can perform & partial
migration first on the non-zero offset sections as dfscussed in the pre-
vious section. The lateral derivative deviation operator is thus given
by

M+ Ei M

P o= - 1 - —2 | y¥p (4.37)

(M + H2)3/2

N
where H is given by equation (4.15).

In practice, in using equation (4.37) we would ignore the M" term
since the deviation operator is not very sensitive to velocity. Thus,

to implement this equation, we first make & c¢rude velocity estimation
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and apply it to the non-zero common-offset sections. Regrouping the
data into common-midpoint gathers the velocity 1s then reestimated with
equation (4.29) or (2.7). With the estimate of w and its second deriva-
tive, the common-midpoint data can be stacked wusing equation (2.4).
Finally, the stacked section 1s migrated with a lateral velocity migra-
tion algorithm.
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