Chapter 1

Introduction

The estimation of velocity in structurally complex areas 1s of
critical dimportance to imaging the earth with seismic reflection tech-
niques. In such areas, however, conventional velocity estimation tech-
niques often yield misleading or absurd results because they are based
on a stratified medium assumption and associate the normal moveout time
with only the root-mean-square (RMS) velocity at a given midpoint. If
the medium velocity varies laterally, the normal moveout time 1is not
only a function of the velocity at a particular midpoint but also of the
velocity beneath all midpoints through which the recorded energy trav-
els. Thus, 1if the velocity changes laterally with wavelengths on the
order of & few cable-lengths any velocity estimation of the medium will

fail unless these variations are taken into account.

The departure from lateral velocity homogeneity can be separated
into two categories as shown in Figure 1.1. The first of these (Figure
1.1a) 1s the case wherein the structure of the medium dnvalidates the
common-reflection-point assumption. 1In this case the media velocity 1is
constant and the reflecting subsurface deviates substantially from being
flat. The second category (Figure 1.1b) is the situation where the
structure is nearly flat, but the velocity of the overlying media varies

laterally.

Doherty and Claerbout (1976) showed how the first problem could be
approximately compensated for by first migrating common-offset sections
(fixed source-receiver separation) with an approximate velocity function
and then estimating velocity from the subsequent common-midpoint gath-
ers. More recently Judson, et al. (1978) also showed how a partial
migration of common-offset sections can minimize structural effects
prior to velocity estimation. The purpose of this thesis is to develop
a method of handling the second problem of lateral velocity variations.
The problem will be 1imited to lateral variations only in the plane of

the sefsmic section, thus assuming a two-dimensional medium.
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Figure 1.1. Two causes of problems for conventional velocity esti-
mation (adapted from Doherty and Claerbout, 1976). The y and z axes
correspond to midpoint and depth respectively. On the left the problem
is that the wunderlying reflectors are not flat. Consequently, the
common-depth-point assumption used in conventional velocity estimation
is dinvalid. On the right, the reflecting interface is flat; however,
some of the energy to 1t travels through a Tocal velocity inhomogeneity.
In reality, both problems are usually encountered together.

There exist many approaches to this problem. Perhaps the most accu-
rate 1s a tomographic method (e.g. Kak, 1979; Dines, K.A. and Lytle,
R.J., 1379) whereby the traveltimes to a given event for each offset and
midpoint are used in the inversion. However, tomographic or statics-
type methods suffer from resolution limitations for velocity variations
greater than a cable-length {(e.g. Wiggens, et al., 1376). The method
proposed in this thesis 1is considerably simpler than tomographic methods
in that it relates the true vertical RMS velocity and its lateral
derivatives to the conventional velocity estimate to a given event,
thereby yielding the true velocity by solving a l1inear system of equa-

tions,.

The basic premise of the lateral derivative technique 1s to charac-
terize the slowness (= 1/velocity) in the vicinity of every midpoint in
a Taylor-series expansion in the midpoint direction, an idea inspired by

the results presented by Pollet (1974). Thus, the subsequant traveltime



equations depend not only on the slowness at each midpoint, but also on
the 1lateral derivatives of the slowness. From the lateral derivative
traveltime equations a relation can be found between (1) a conventional
hyperbolic velocity estimate and (2) the true velocity and its lateral
derivatives. Approximating the derivatives as finite differences will
then 1lead to a 1inear system of equations which 1s easily solved to

obtain the velocity to a given event.

One of the key results from the development of the traveltime equa-
tions 1is that the wmost important 1lateral derivative is the second
derivative of the slowness. This can be illustrated in a oqualitative
manner with the simple model shown 1n Figure 1.2a. The model consists
of a flat reflector at a depth z with a thin low-velocity layer situated
in between the surface and the interface. Consider the idealized trav-
eltimes (with no diffractions) to the bottom reflector for two common-
offset sections across the model shown in Figure 1.2b. Measuring the
hyperbolic moveout between these two offsets would yield a velocity
estimate 1like that shown as the bold line in Figure 1.2c. The light
Tine shows the correct vertical RMS velocity to be & step function in
the midpoint direction. The effect of the truncated bed i1s to produce a
square-wave-shaped fluctuation. (The square-wave shape occurs because
Just two offsets are considered here; in reality the fluctuation is more
nearly sinuscidal in shape.) Taking the difference between the true and
the estimated vertical RMS velocities leaves the residual shown in Fig-

ure 1.2d.

Now consider taking the second lateral derivative of the true slow-
ness shown in Figure 1.2c. Using a finite differencing spacing equal to
half of the wavelength of the velocity perturbation, it is easily veri-
fied that the result would give the shape of the velocity perturbation
in Figure 1.2d. Thus, at least 1n & qualitative sense, errors 1n the
conventional velocity analysis are related to the second lateral deriva-

tive of the slowness.

The basic organization of the thesis is as follows. Chapter 11
begins with the derivation of the traveltime eguations for a laterally

varying medium using a simplified ray theory approach. From a slight
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modification of the traveltime equation, & relation can be found between
conventional slowness estimates and the true slowness and its second
derivative. This relation forms the basis of the 1lateral derivative
method (LDM) of velocity estimation. We will next examine the resolu-
tion of the lateral derivative method and how much 1lateral velocity
variation 1is necessary before it becomes significant. Considered next
is the implementation of the lateral derivative method and a discussion
on the stability of the inversion. Under the assumptions used in deriv-
ing the traveltime equations, the effect of the first lateral derivative
of velocity 1is negligible. As a last topic the validity of neglecting
this term is considered, to see how large the term must be before

becoming significant.

In Chapter III the lateral derivative method is applied to three
synthetic datasets of 1ncreasing complexity, and the results are com-
pared with those from a conventional velocity estimation procedure. The
synthetics are designed to test how well the lateral derivative method
works over areas with the following features: abrupt lateral discon-
tinuities, lateral velocity variations at varying depths, and a regional
gradient in velocity. The final section of Chapter III 1is devoted to
the application of the lateral derivative method to field data. The
dats are marine data from the Grand Banks area and contain lateral velo-

city variations due to the seafiocor topography in that region.

The ray theory approach is attractive for its simplicity; however,
it does not help in going to higher orders of accuracy or in considering
dipping or diffracting earth models. Thus, in the final chapter, the
lateral velocity traveltime equations are rederived using a wave theory
approach. This approach is much more useful, since it suggests how to
preprocess data before velocity estimation to reduce the effects of dip
and diffractions. A procedure is presented which can be used for areas
where the medium 1is a combination of the models shown in Figures 1.la

and 1.1b.



