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ABSTRACT

In areas of 1large lateral wvariations din velocity, conventional
velocity estimation techniques fail and often result in absurd interval
velocities because they assume a stratified earth model. The errors in
conventional velocity estimation due to Tateral velocity variations are
shown to be related to the second lateral derivative of the RMS slowness
(1/VRMS). This relation 1is obtained by assuming straight raypaths and
approximating the vertical RMS slowness to a given interface as a second
order Taylor series expansion in the midpoint direction. Under these
approximations, the effect of the first lateral derivative of the slow-
ness on the traveltime 1s negligible. Knowing the stacking velocity to
a given event as a function of midpoint, the lateral derivative method
(LDM) can correct for the velocity estimation errors due to lateral
velocity variations down to wavelengths on the order of two cable-
lengths. Letting Av be the velocity variation over one cable-length,
the LDM is applicable when Av/v > ~2%. The assumptions of the method

break down, however, when Av/v > ~30%.

Linearizing the equation relating the conventional velocity esti-
mates and the true velocity resulis in a set of eguations whose inver-
ston 1s unstable. However, stability 1s easily achieved by adding a
non-physical fourth derivative term which affects only the higher spa-
tial wavenumbers that are beyond the lateral resolution of the LDM. The
velocity estimation procedure, then, is to solve a pentadiagonal system
of equations 1in which the 1input data are the conventional velocity esti-

mates and the zero-offset traveltimes to a given event.

Synthetic models designed to test the assumptions of the LDM show
that none of the assumptions leads to spurious results. Even 1in the
worst possible cases, the LDM results show an improvement over conven-
tional results. A test of the lateral derivative method on field data
where there is a lateral velaocity variation due to seafloor topography

gives a result which 1s substantiated by a depth migration.
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