RECURSIVE DIP FILTERS

Jon F. Claerbout and Dave Hale

So-called “pie-slice" filters offer considerable control over the
Filter response in k/w dip space. While recursive filters are not con-
trolled as readily, they do meet the same general needs as pie-slice
filters and offer the advantages of (1) causality, (2) time- and space-

variabiTity, and (3) simple and economic recursive implementation.

Theory

Let P denote raw data and Q denote filtered data. When seismic
data are severely band-1limited (or quasi-monochromatic), dip filtering

can be achieved with spatial frequency filters.

High dip reject:

Q = 5 P (1)
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Low dip reject:
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These filters are easily applied in the space domain by interpreting k2
as a tridiagonal matrix with (-1,2,-1) on the diagonal and kg as a con-
stant times the identity matrix. One then solves the resulting set of

simultanecus equations for Q.

Admitting that seismic data have a bandwidth greater than zero, we

are led to consider improved dip Filters.

High dip reject:
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To understand this f1lter we need to look 1n the (w,k)-plane and draw
contours of constant kz/m; i.e., w = ckz. Such contours, examples of
which are shown in figure 1, are curves of constant attenuation and con-
stant phase shift. Inspecting equation {(3), we conclude that there is
no phase shift in the flat pass zone, but that there 1s time differen-

tiation in the attenuating zone.

Low dip reject:

0, = ——® _p (4)



237

1 N | /
N pass //
N\ /
N\ /
N\ /
N\ /
-5 N £ ideal
N 7 T dip
seismic \ /4 filter
band N ,
N /
w Or — reject —
wNyquist // \
// N\
0.c 0 , \\ ,
p— - / -
-3 / \
/ AN
\
// N
\
// N
._1 1 AN
-1 -0.5 0 5 1
k
kNyquist

FIG. 1. Constant attenuation contours for the filter of equation (3).
Over the seismic frequency band these parabolas may be satisfactory
approximations to the dashed straight 1ine.

The filters of equations (3) and (4) behave in opposite ways. (In
fact, 01 + 02 = P.) Figure 1 st111 applies in the case of equation
(4). but pass and reject zones are interchanged; and we see temporal

integration occur in the reject zone.

An important point is that the filters of equations (3) and (4) are
either causal or anticausal, by our choice. To clarify this we multiply
the numerator and denominator of (4) by (-iw) and apply Muir’s rules

for impedance functions (see SEP-16, p. 143).
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Implementation

Causality permits the dimplementation of these filters by a
straightforward application of the technigues of time domain wave extra-
polation as described by Claerbout (1976). Basically, -7w is replaced
by 1its Z-transform representation 2(1-2)/(1+Z), and k2 is replaced by
the above-mentioned tridiagonal matrix. Then Q@ and P are inter-
preted as vector Z-transforms (i.e., the coefficient of each power of 2
is a vector). Clearing out all the fractions and identifying on both
sides the coefficient of each power of Z leads to the desired recursive
relations. The filters are easily wmade time- and space-variant by

allowing the cutoff parameter, kg/un, to vary with time and space.

Application

Clearly, dip filters may be useful whenever we can discriminate
between desired and undesired events on the basis of dip. Now consider
the following example. Weak fault diffractions carry velocity informa-
tion, but they may often be invisible 1in the presence of stronger hor-
izontal refliections. Dip filtering could be used to attenuate the flat
events relative to the more steeply dipping pieces of diffractions. For
data recorded at late times and at short offsets, such diffractions
could be the only way to measure velocity. This situation applies, for

instance, to COCORP data.

In testing the performance of the dip filters of equations (3) and
(4), we applied these filters to a window of real data taken from a con-
stant offset section. The data window is shown in figure 2a. Figures
2b and 2c show the results of applying the dip filters of equations (3)
and (4), respectively, to this datea window. The filtered data of figure
2b 1llustrate the spatially "mixed" appearance due to rejecting all but
the flattest events. But we could see these flat events in the raw data
window. The filtered window of figure 2c is more interesting. With the
strong horizontal events attenuated, weaker diffraction patterns are
more visible, a particularly good example being the diffraction in the
upper, left-hand corner of figure 2c which is virtually invisible in the

raw data of figure 2a.
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FIG. 2a. The input data window. The strong, horizontal event at 0.5
sec is the water-bottom reflection.
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Unanswered Questions

While experience with these filters has shown the parabolic approx-
imation to the straight line to be adequate for many real data examples,
one interesting, unanswered question is how to extend the frequency band

er which the filters behave 11ke 1deal dip filters. Another question
is how causal dip filters should be defined. 1In time series analysis a
causal filter is one for which the impulse response vanishes where t <
0. In wave propagation we have two-dimensional filters in ({x,t)-space
or (x,z)-space. Perhaps 1t should not be the half-space t < 0 1in the

(x,z,t)-volume where the filter vanishes, but the space
L
t - (x2 + 22)z < 0, which 1is outside & hyperbola in (x,t)-space or a

semicircle in (x,z)-space.
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