THE PURIFICATION OF BINARY MIXTURES

Jon F. Claerbout

We solve problems all the time without being able to explain how we
solved them. Who can explain how to ride a bicycle, for example? How
are voices in a noisy crowd separated? Why is it that we listen to only
one voice when two equally strong voices are present? Is the separation

made at a cognitive or a purely physical level?

Why does the best of industrial wmultiple suppression processes
often 1Jeave a residual of multiples that the first year student easily
recognizes? Information theory must have something to do with 1t.
Unfortunately, much of the academic discipline of information theory is
based on the assumption of stationary Gaussian processes, which would be
highly applicable to the study of a universe that had undergone "thermal
grey death," but can be very misleading in an analysis of real Tife.
Information theory tells us that independent variables must be uncorre-
lated, but everyday life says the opposite. The orthogonalization of two
observation vectors based on the sample correlation will mare easily mix

independent variables than decompose them into "independent" causes.

Sand and Gravel

Take a volume V1 of gravel, and add a volume _V2 of sand. The

total volume 1is now less than V1 + V2 because some sand grains fit in
the holes between the gravel pebbles. Whether mixing produces a volume

change 1is an interesting thermodynamic problem. Water and oil are
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immiscible, but o0il and gasoline are miscible. (Miscible apparently
means mixable in some language other than English.) In a technical sense
the word mixture may be reserved for the case when mixing results in a

volume change.

We are very far from equilibrium if we have most of the sand in one
volume and most of the gravel in the other volume. Imagine that each
grain and pebble were denoted by a number but that the numbers did not
distinguish grains from pebbles. Suppose some mechanism enabled us to
move numbers from one volume to the other and then measure the sum of
the resulting volumes. This 1is all we need to purify the mixtures.
Arbitrarily moving numbers from one volume to the other, we have only to
reverse those moves that decrease total volume. It would alsoc help a
lot if the initial two volumes were somewhat removed from equilibrium.
The process might work if the initial two volumes were homogeneous, but
it might also be hard to get started. And we would not know which of

the final volumes was sand and which was gravel.

Near Trace - Far Trace Problem

The sand-gravel problem nicely illustrates the advantages of start-
ing far from equilibrium, but it is too vague to be directly interpret-
able as a seismic problem. Let us devise a seismological problem which
is analogous to the sand-gravel problem but which has only a single
adjustable parameter. Ultimately I am interested in solving & multiple
reflection problem by adjusting a reflection coefficient to separate
primary reflections from multiples. But the multiple problem carries
with it so many peripheral problems that we will invent an analogous,
simplified problem. Analogous to the gravel we will have an ideal far-
end-of-cable seismogram, and analogous +to sand we will have an ideal
near-end-of-cable seismogram. Because of some poorly understood electr-

ical cross~talk phenomena, our observations consist only of

near + e, far (la)

x
"

y = far + €, near {(1b)
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where €, and s, are small unknhowh nhumbers. Notice that the discovery
of some magic parameter € will enable us to mix our observations x and
y in the right proportion to get pure sand.

Mixture(e) = (near + €

far) + e(far + e, near) (2)

1 2

Clearly we want e = "€ but we have no way of knowing what € 1s. The
procedure will be to try various values of e and observe some macros-
copic property like volume. Of course we are all well aware of the
"grey-death" solution, which 1s to define € to be the negative of the
sample correlation coefficient (x-y)/(y-y). But the grey-death solution
arises when we minimize the energy of the mixture, and the trouble with
energy is that is quite different from information: information is

often carried by tiny amounts of energy.

A Measure of Homogeneity

The geometric inequality is closely related to information theory.
This subject was developed with a deconvolution application in SEP-15,
p. 104. The basic principle is that for N positive variables p‘:i we

have the arithmetic average exceeding the geometric average:

N N
Ly p. 2 m g™ (3)
N2 Py =Py

j=1 j=1

If all the p‘j are equal to one another, the two averages become the
same. The ratio of the sum to the product always exceeds unity, so the

natural logarithm of that ratio is always positive. Denote this by S.

w
[}

n (2 7/ II)
N
S InP, 2 0 (4)

The most homogeneous situation occurs when all the pj dre the same.
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Then S = 0. When the pj become very different from one another §
increases. If our sand-gravel mixture were divided into N equal
masses, then we could measure the volume p:I of each mass. The minimum
5 wvalue would be S = 0 when each mass was mixed in the same propor-
tions as every other mass. The maximum S value would occur when some Pj

contained all sand and others contained all gravel.

Defining Positive lVariables

Before we can apply the geometric inequality measure of simplicity
to seismograms, we need a way to convert oscillatory zero-mean variables
to positive variables. As 1in the previously mentioned SEP-15 paper,

three possible ways present themselves.

First, data can be sorted according to size. Then the difference
between successive sizes is & positive variable that can be used 1in the
geometric inequality. In SEP-15 this method is shown to be related to

Shannon’s definition of information in terms of probability.

We can also use the seismogram envelope function p. in (4) - a
method related to measuring information by counting bits (also as in
SEP-15). The envelope approach may be implemented 1in either of two
ways: (1) wusing the Hilbert transform, complex trace approach, or (2)

using the local averaging approach.

Real world seismograms have envelope functions that exhibit quite a
range of amplitudes, so the simplicity measure S s often very large.
The near trace and far trace seismograms show a large burst in the
envelope when the first arrivals come. Since the arrivals come at dif-
ferent times, crosstalk will tend to homogenize the envelopes, destroy-
ing simplicity. The Tow 1level noise before the first signal arrival
contributes a lot to the simplicity of a seismogram as defined by equa-
tion (4). So even a small amount of crosstalk from the near trace onto
the far trace can destroy much of the simplicity. Figure 1 depicts the
analogy between the volume of sand-gravel mixtures and the simplicity of

near and far trace seismogram mixtures.
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FIG. 1. Analogy of volume of sand-gravel mixture with simplicity of
near trace-far trace mixture.

Purification

The cuspoid appearance of figure 1 may have some validity for the
sand-gravel mixture but we can expect the seismogram mixture to be some-
what more continuous. This being the case we can hope that a Taylor
series of the simplicity S about the origin e = 0 would enable us to
go to maximum simplicity in one jump. My previous work on bitcount
deconvolution suggested a method that proceeded to the extremum in a
clumsy, iterative way. It was guite safe when the starting point was
far from the maximum, but was slow to arrive at the final result. Now

we will try for one jump.
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Let us abbreviate (2) by

2, = X, + 8y, (5)
For the envelope constructed with complex traces we have
Py = (xy + ey )x, + ey,) (6a)

At € = 0 we will need first and second derivatives of pt with respect

to e. Denoting these by ét and p, we have
Py = XY, Y Y, (6b)
(6c)

The alternative form of the envelope 1s to average neighboring points.
A convenient notation treats xt as a matrix x,‘;i in exdactly the same
fashion as FORTRAN does. The product of the range of i multipled by
the range of j equals the range of t. The subscript 1 ranges over
neighboring points on the time series. Parallel to equation (6a), the

envelope and iis derivatives are given by

2
P, = f (x1.j + syij) (7a)
y -« ¥ 2 7b
Py R PR F (76)
= X2 7
Py RS ERAT (7¢)
Now, recalling equation (4),
1 N 1 N
S = 1In N Z p. - N Z 1Inp. (8a)
3=1 =1 J
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The first derivative at e = 0 s
s 2Py 1% (8b)
d -3 N
€ Py Py
The second derivative at e = 0 s
- -2
d%s 2, Py 1o P3Py
2 T |Tp. T | "2 0. 2 (8c)
de 3 b | J P:j

By Newton’s method, the value of e for maximum $§ 1is

€ = - —%E- (9)
¢

Example: Separation of Near and Far Trace

Needs to be tried.

Example: Speed Convergence of Bitcount Debubble

Needs to be worked out.

Example: Improved Noah Demuiltipile

Needs to be tried.

Example: Separation of P Wave and $ Wave Images

Good luck!



