ANISOTROPY DISPERSION AND WAVE MIGRATION ACCURACY

Jon F. Claerbout

There are two distinct types of errors 1in wave miyration. of
greatest practical importance 1is frequency dispersion, occurring when
different frequencies propagate at different speeds. This may be
reduced by improving the accuracy of finite difference approximations to
differentials. Its ultimate cure 1is sufficient refinement of the dif-
ferencing wmesh. Of secondary importance, and the topic of the present
study, is anisotropy dispersion. This occurs when waves propagating iin
different directions do so at different speeds. It is remedied by the
Muir square root expansion. As a practical matter, it is rarely neces-
sary to go beyond the well-known 45-degree equation. It is not that we
do not observe waves at steeper angles; we often do. The problem at
large angles 1is that our knowledge of seismic velocity is seldom, if
ever, sufficiently accurate to justify the trouble dinvolved 1in using

wide angle equations.

Anisotropy is commonly associated with propagation of 1ight in cry-
stals. In reflection seismology anisotropy is occasionally invoked tu
explain the discrepancy between borehole velocity measurements {(vertical
propagation) and velocity determined by normal moveout (horizontal pro-
pagation). It may also arise as an undesirable side effect 1in seismic
calculation and data processing. This subject was analyzed in detail in

SEP-8 and the results will be restated here.
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Point Source Response

The +ideal wavefront from a Huygen’s secondary source is a semicir-
cle. The secondary source that actually results from the 15-degree
extrapolation equation is an ellipse. The secondary source that actu-
ally vresults from the 45-degree extrapolation equation is an interest-

ing, heart-like shape. These are depicted in figure 1.
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FIG. 1. Wavefronts of 15-degree and 45-degree extrapolation equations,
inscribed within the exact semicircle. Waves with sin 8 = vkx/w = %l
are marked with small circles.

In practice the top parts of the ellipse and the heart are rarely
observed because they are 1in the evanescent zone, and the x-axis is
seldom refined sufficiently for them to be below the aliasing frequency.
The <center of the heart is sometimes seen in the (x,t)-plane when the
45~degree program is used. It is depicted by a line drawing in figure 2

and shown by a 45-degree diffraction praogram in figure 3.
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Wave Front Direction and Energy Velocity

In wave propagation we are familiar with the idea of energy pro-
pagating perpendicular to a wavefront. When there is anisotropy disper-
sion the two directions differ. The apparent horizontal velocity seen
along the surface is dx/dt. The apparent velocity along the vertical,
seen in & borehole, is dz/dt. Because of geometrical considerations,
both of these apparent speeds exceed the wave speed. A vector perpen-
dicular to the wavefront with a magnitude inverse to the velocity is

called the slowness vector:

dt dt
slowness vector = —
dx dz

A vector perpendicular to the wavefront scaled to the speed of the wave-
front is evidently the slowness vector divided by its squared magnitude.

It is called the phase velocity vector:
dtdt
dx ' dz

(192 + ()2
dx dz

phase velocity =

In a disturbance with sinusoidal form, the phase may be set equal

to a constant, and the derivatives may be determined, giving

k k
slowness vector = i (la)

The direction of energy propagation 1s somewhat more difficult to

derive, but it turns out to be the so-called group velocity.

group velocity = [gF_ , gE—J w(kx.kz) (1b)
X z

For the scalar wave equation uz/v2 = ki + kz. the group velocity and



210

X &€

FIG. 2. 45-degree heart theory.
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FIG. 3. 45-degree heart example.
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the slowness vector are in the same direction, as may be verified with
equation (1). The most familiar type of dispersion is frequency disper-
sion, where different frequencies travel at different speeds. It s
shown in SEP-8 that the familiar (15-degree, 45-degree, etc.) extrapola-
tion equations do not exhibit frequency dispersion. Specifically, as
functions of ® and kx/w. the velocities do not depend on @. In
other words, the elliptical and heart shapes of figure 1 are not

frequency-dependent.

The most interesting aspect of anisotropy dispersion is that energy
appears to be going in one direction when it is actually going in
another. To illustrate this phenomenon we wi]] consider an exaggerated
instance of 1t in which the group velocity has a downward component and
the phase velocity has an upward component. Figure 4 depicts the
dispersion relation of the 45-degree extrapolation equation. A slowness
vector, which 1s a wavefront normal, has been selected by drawing an
arrow from the origin to the dispersion curve. The corresponding direc-
tion of group velocity may now be determined graphically by noting that
group velocity 1is defined by the gradient operator in equation (1b).
Think of w as the height of a hill where kz points north and kx
points east. Then the dispersion relation is a contour of constant
altitude. Different numerical values of frequency result from drawing
figure 4 to different scales. The group velocity, in the direction of

the gradient, is perpendicular to the contours of constant .

The anisotropy dispersion phenomenon is most clearly recognized in
a movie, although it can be understood on a single frame, as 1in figure
5. Figure 6 is a line drawing interpreting energy flow from the taop,
through the prism, reflecting at the 45-degree angle, reflecting from
the side of the frame, and finally entering an area of the figure which
1s sufficiently large and uncluttered for the phase fronts to be recog-
nized as energy apparently propagating upward but actually propagating

downward.

That neither energy nor information can propagate upward in figures
5 or 6 s obvious from the standpoint of the program which calculates

figure 5. The program does not have the entire frame in memory; it
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FIG. 4. Dispersion relatifon for downgoing extrapolation equation show-
ing group velocity vector and slowness vector (perpendicular to wave-
front).

produces one horizontal strip at a time from the strip just above. Thus
the movie’s phase fronts, which appear to be moving upward, seem very
curious. Theoretically we do not expect wave extrapolation, particu-
larly the 45-degree equation, to handle angles to 90 degrees. Yet the
example shows that these extreme cases are indeed handled, although in a

somewhat perverted way.

I once observed a similar circumstance on reflection seismic data
from a geologically overthrusted area. The data could not be made
available to me at the time, and by now 1t 1s probably long lost in the
owner’'s files, so you will have to be content with the recollected Tine
drawing in figure 7. The increasing velocity with depth causes the ray
to bend upward and reflect from the underside of the overthrust. To see
what 1s happening in the wave equation, 1t is helpful to draw the
dispersion curve at two different velocities, as in figure 8. Dowhward
continuation of a bit of energy with some particular stepout
dt/dx = kx/w begins at & quite ordinary angle on the near surface, slow
velocity dispersion curve. But as deeper velocity material is encoun-

tered at depth, that same stepout implies a negative phase velocity.
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The situation resembles that 1in figures 5 and 6. Although the thrust
angle 1is unlikely to be quantitatively correct, the general picture is

appropriate.

Analyzing Errors of Migration

A dipping reflector that 1s flat and regular may be analyzed in its
entirety with the phase velocity concept. The group velocity concept is
required only when more than one angle is simultaneously present, as
will be the case when we analyze the point scatterer response. In addi-
tion, a dipping bed with reflection amplitude variable along the bed
must be analyzed with group velocity. Figure 9 depicts a smooth, flat,
dipping bed which has been undermigrated because the ﬁz defined by some
rational square root approximation or some numerical approximation did

hot match the correct square root value of kz.

The error in this case is entirely a time shift error. Since in
this case we have taken the reflection coefficient to be constant along
the reflector, no lateral shift error cdan be recognized. The time error

may be theoretically determined by

dt 2 b4
T ° . (2)

For the so-called 15-degree equation {1t turns out that about a half-

percent phase error is made at 25 degrees.

Next, we determine the error 1in the collapse of a hyperbola. Fig-
ure 10 depicts the downward continuation of a hyperbola. For clarity
the downward continuation was not taken all the way to the focus. We
will keep track of a ray of some Snell’s parameter p = dt/dx by
selecting some siope p and constructing a tangent 11ine segment of
slope p to each of the hyperboloids. If there were a little amplitude
anomaly where the slope is p, you would be able to identify it on each
of the hyperboloids. The group velocity is needed because either a
curved event or an amplitude anomaly requires a range of plane wave

angles to be represented. This 1is analogous to a time series wavelet's
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FIG. 5. Plane waves of four different frequencies propagating thr gh a
right, 45-degree prism. From SEP-1, p. 26: 1this 1s one frame
movie made by Raul Estevez
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FIG. 6. Interpretation of some energy flow in figure 5 which illus-
trates different directions of energy and wavefront normal.
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FIG. 9. Undermigrated dipping reflector.

need for a range of fregquencies to represent it. You will notice in
figure 9 that the actual amount of time moved is too little; likewise,
the actual lateral distance moved is too small; so 1in practice, +the
errors are sometimes compensated for by about a six percent increase of

either 2 or v. The actual amounts of the errors are shown to be

a n
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FIG. 10. Error of hyperbola collapse. Note that the actual curve is
abave the desired curve, but the actual point is below the desired
point.

where kz is taken to be a function of w and kx' It turns out that
for the 15-degree equation, about a half-percent group velocity error
occurs at 20 degrees. Thus the group velocity error is generally worse

than the phase velocity error.

Derivation of Group Velocity Equation

We can make up an impulse function at the origin in (x,2)-space by

superposing Fourier components:

+1kxx + 1k 2
ST e z dk  dk, (4)

Physics and possibly numerical analysis lead to a dispersion relation

which 1s a functional relation between o, kx’ and kz. say, w(kx.kz).
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The most common example 1s the scalar wave equation wz = (ki + ki)/vz.
The solution to the equations is

-fwt + 1kxx + 1kzz

e (5)

Integrating (5) over (kx.kz) will produce a monochromatic time function
which at t = 0 1s an 1impulse at (x,z) = (0,0). The expression at

some very large time t s

—1th(kx,kz) -k

%
t
~
I

X

JS e dk  dk_ (8)

At t-very large, the integrand is a very rapidly woscillating function
of wunit magnitude. Thus the integral will be nearly zero unless we can
get the quantity 1n square brackets‘to become nearly independent of kx
and kz for some sizable area 1in (kx’kz)-space. To find such a flat spot
we proceed as if we were finding the max or min of a two-dimensional
function, that 1is, by setting derivatives to zero. This analytical

approach is known as the stationary phase method:

. 9 . %w x
0 = 301 = 5 -1 (72)
X X
_ 9 . % _z
0 = dk L1 = ok 1 (7b)
2 k4

So in conclusion, at time t the disturbances will be located at

e) )
(X,Z) = t[a‘: v a:] (8)
X 2

which justifies the definition of group velocity.
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Derivation of Energy Migration Equation

Energy migration in (x,t)-space 1s analyzed in a fashion similar
to the derivation of group velocity. You take depth to be large in the

integral

1 X
1z[kz(w.kx) -w =+ k

Jle z X Z] dw dk_ (9)

The result is that the energy goes to
akz akz
(x,t) = z|- z~, F (10)
P

This justifies our previous assertion that (3) can be used to analyze

energy propagation errors.



