SYMMETRY - SO WHAT?

Robert H. Stolt

Space-time acoustic imaging algorithms appear at first glance very
different from their f-k counterparts. Actually, space-time processes
can be constructed which are very similar to f-k processes, apparently

because hyperbolas 1in space-time are associated with hyperbolas in f-k.

This similarity is most apparent for the NMO-stack operation. In
normal space-time processing this operation has two parts. We first
have a time shift

(1)

then a sum over offsets h. In f-k space, the same operation can be

accomplished by first a frequency shift

(2)

then a sum over offset spatial frequency kh. A space-time hyperbolic
moveout correction and stack translates into a hyperbolic moveout and
stack in f-k space also. Granted, the two operations should not pro-
duce identical results on real data. Noise, multiples, statics,
discrete and finite data sampling all give rise to differences, and in

fact, the f-k algorithm above will give any data a 45° phase shift.
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Nevertheless, the same basic effect is achieved by the same operation in

other space.

Much of this symmetry carries over to zero-offset migration. For

this operation the f-k representation is a hyperbolic freguency shift

(3)

The time domain representation may assume many guises. An analog to (3)
can be constructed by noting that zero-offset traveltime for a point

scatterer at (yo.z0 = vto/2) is

t(y) = t o —— (4)

The migration of point (yo,to) may be accomplished by summing over its
diffraction hyperbola, that fis,

t-»1 = t - ———— (%)

then summing over y. As for the f-k NMO-stack representation, a 45°
phase shift 1s 1left in the data. The space-time migration requires a
sum {over midpoint) with no f-k analog, but in both cases the hyper-
bolic shift [(3), (5)] appears.

Finally, consider the imaging process for unstacked data. In f-k
space, migration dis governed by the "double square root"” dispersion

relation

2 k, + k 2 2 k, - k 2
o by o, e | h Y (6)
z 2 2 2 2

This equation hardly looks like a hyperbola. However, if we solve for e
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we discover a single square root equation

kzv k: ks
w = |1+ ||+ -5 (7)
k k
2 z

1f ky/kz {(dip) 1is fixed, the remaining variables define a family of
hyperbolas. Another family is defined if kh/kZ is fixed.

It should come as no great surprise that a "double square root"

equation exists in space-time too. The two-way traveltime for a point

scatterer at (yo,to) is

i = _;. t + L t + (8)

Solving for to’ we get a single square root equation

L
%

2
2 4(y - y)
4h o
t = 2]l - e——] ] e ———— (g)
] [ th] v2t2

If h/vt 1is fixed (a radial trace - see Ottolini, this. report) the
remaining variables, just as in f-k space, define a family of hyperbo-

las.

We can accomplish f-k 1maging of unstacked data by first a fre-

gquency shift

kzv
w - w o= 5 (10)

then a sum over offset spatial frequency kh’ and a 450 phase shift. The

same process in space-time could be a time shift

t et , (11)
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then summations over both offset h and basement point y, and a phase
shift. Note that the arrows in {10) and (11) point the opposite way.
Inside the double square root appears unmigrated frequency [equation
(6)] but migrated time [equation (8)].

The symmetry between f-k and space-time 1s summarized 14n the

table on the following page.
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