INTRODUCTION TO WAVEFIELD EXTRAPOLATION

Jon F. Claerbout

The single square root equation, whose function is to extrapolate
wavefields down into the earth, is the principal basis for the migration
process of reflection seismology. The purpose of this article 1s to
develop the single sqguare root wave extrapolation equation from a

minimal background of mathematical physics.

Plane Waves

Figure 1 is a plot of the equation of a straight 1ine in the x-z
plane. The line depicts a seismic wavefront.

Muitiplying through the equation by a cosine and rearranging, we have

zcos & + x sin# = const (1)

Assuming that the right hand constant increases with time t at speed
v, we have a moving line which in three-dimensional Cartesian space is

the equation of a moving plane:

zcos & + x sin® = vt (2)

An important case occurs when z = 0, because our geophysical measure-
ments are ordinarily constrained to be on the earth’s surface. Equation

(2) with 2z = 0 now gives the horizontal speed x/t of the intersection
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FIG. 1. The straight line wavefront.

between the planewave and the earth’s surface, namely

2 v (3a)

This horizontal speed is called the apparent velocity or the horizontal
phase velocity of the wave. Notice that this speed generally exceeds
the speed v of the wave itself. We occasionally have borehole meas-
urements in which the apparent velocity is the vertical phase velocity.

In this case we substitute x = 0 into (2), getting

z
t cos @ v (3b)

Let f(t) denote some arbitrary waveform function of time. Then

f(t - to) represents the same waveform shifted by to in time. Now if
we let t0 be the value of t defined by (2), we have an expression far

an arbitrary waveform f moving on a plane wave

f[t - %-(z cos # + x sin 0)] = waveform on planewave (4)
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Snell Waves

A major property of the earth’s crust is that the velocity of
seismic waves increases with depth. The effect of depth-dependent velo-
city v(z) 1is to bend rays by 3Snell’s law, so that along any ray
{sin [8(2)]}/v(z) is a constant. This constant is called Snell’s param-
eter p = (sin #)/v. We have defined # as the angle from a wavefront to
the horizontal. Rays are defined as being perpendicular to wavefronts,
so in terms of a ray, # is the angle from the ray to the wvertical.

The 1inverse of (3) is

sin [8(2)]

_;E. = v(z) = p # p(Z) (53)
% i co: é (5b)

Equation (5b) is not valid when v depends on z. The validity of the

concept of a local plane wave is expressed by the equations

At at sin ¢
™ T T v TP (62)
L
2 2% ’
At dt _ cos @ _ [1-opwv(z2)"1°% _ 1 [dt)2 (6b)
Az ~ dz v - v(z) - v(z)2 dx

To obtain the right members of (6b) we used (5a), (6a), and the Ffact
that cos @ is equal to (1 - sin20)§. Equations (6a) and (6b) depict

the local situation; the global situation is given by

;|- ot
t{x,z2) = px + Jh el

dz (7)

as may be verified by the substitution of (7) into (6). Equation (7)
tells you at what time t a wavefront will pass you if you are located
at position (x,z). We can use this as a reference time t on an arbi-

0
trary waveform f.
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2 [1 + pzv(z)2]/2
flt - px - JL e

L]

F(t - to) dz (8)

arbitrary signal f following ray path to(x,z)

An expression 11ke (8) will be called a Snell wave.

Shifting Equations

An important task is to predict the wavefield inside the -earth
given the waveform at the surface. For a downgoing plane wave this can

be done by the time-shifting partial differential equation
1 8P
8z v ot (3)

as may be readily verified by substituting the trial solutions

P = f[t - é] for constant v {10a)
or
P = f[t . f s ] for v(z) (10b)
0 v(z)

Heeding some important restrictions, this also works for non-vertically

incident waves with the partial differential equation

orP dt 9P
2z T dz ot (11)
which has the solution
Z dt
P = f(t - px - S =—dz) (12)
p dz

In interpreting (11) and (12) we recall that dz/dt is the apparent
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velocity in a borehole. The partial derivative of wavefield P with
respect to depth 2z dis taken at constant x, i.e. the wave is extra-
polated down the borehole. The idea that downward extrapolation can be
achieved by merely time-shifting clearly holds only for situations in
which a single Snell wave is present, that is, the same arbitrary time
function must be seen at all 1locations. Substitution from (6} also

enables us to rewrite (11) in the form

ER

e [ 1 rane| e
9z |v(z)2 [dx] ] ot (13)

Since dt/dx = p can be measured along the surface of the earth, it
seems that equation (13), along with an assumed velocity v{z) and some
observed data P(x,t), would enable us to determine 8P/3dz, which is the
necessary first step of downward continuation. But we must not forget
that we are dealing by assumption with a single Snell wave and not a
superposition of several Snell waves. Superposition of different
waveforms on different Snell paths will cause different time Ffunctions
to be seen at different places. Then a mere time-shift will not achieve
downward continuation. Luckily, a complicated wavefield that 1s wvari-
able from place to place may be decomposed, by mathematical techniques
not yet discussed, into many Snell waves, each of which can be downward
extrapolated with the differential equation (13) or its solution {(12).

The most well-known decomposition technique is Fourier analysis.

Multidimensional Complex Exponential

A sinusoidal disturbance 1in space and time is conveniently
described by the complex exponential function

-iwt + ikxx + 1kzz
f = e (14)

This function plays an important role in Fourier transformation., where
the angular frequency w s called the Fourier dual to time t and vice

versa. Likewise, the space coordinates (x,Y,2z) have Fourier duals
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(kx,k ,kz). In equation (14) we have already set ky equal to zero.

M
If we specialize the arbitrary waveform of equation (8) to a sinusoid,

it will begin to resemble equation (14):

2, \2|%
z [l-p v(z) ]
-iw|t - px - fo-"-—"-v‘(-z—)—-'——dz

f = e {18)

At the earth’'s surface 2z = 0 we can reconcile the moving wavefront

(15) with the Fourier function (14) by the identification of

Ky
5 = P (16a)
which, incorporating (5a), ‘s
vkx
sin & = o {(16b)

Replacing the time derivative 8/8t by -iw and wutilizing the substitu-
tions (6) and (16), the extrapolation equation (11) or (13) can be put

in the following various forms:

dp iw 2 %
i V() [1 - p v{(2)} ] P (17a)
(2)k ? :
viz
dP iw X
iz ey 1—[ " ] P (17b)
dP e
e v-cos(0) P (17¢)

Equation (17¢) s the most intuitive form because it says that upon
downward extrapolation at a fixed x the phase changes at a rate of the
frequency w divided by vertical phase velocity v/cos 9. Equation (17b)

is most dimportant in practice: An observed surface waveform is a
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function of t and x. Two-dimensional Fourier transformation converts
it to a function of « and kx. Then equation {(17b) forms the basis of

various algorithms to downward extrapclate each point in (w.kx)~space.

An analytical solution may be found as follows: Evaluate (15) at

z = zl; evaluate it again at z = Z,i divide and rearrange 1t, obtaining

N\.‘

7 - ]
iw J; wES) dz
flz,) = flz)) e 1 (18a)

2
b4
2 v(z)k
iw S 1 1 - {——*~i dz
2

f(zz) = f(zl) e (18b)
4
J‘z cos [8(z)]

dz
2 v(z)
f(zl) e 1 (18c)

iw

f(zz)

Again (18c) is the most intuitive, while (18b) is most commonly used.
Equation (18a) forms the basis of various migration techniques known as
dip domain, slant stack, wave stack, Snell stack, or (in the Russian
literature) Controlled Directional Recording (CDR) methods.

The Double Square Root (DSR) Equation

The DSR equation forms the basis for imaging and velocity analysis
in reflection seismology. In fact, if reflection seismology were to be
summarized in a single equation, the DSR equation would be a good
choice. It can best be understood after studying a variety of tech-
nigues to implement the single square root equation [equation (13)], but
it is always nice to get a bird’s eye view of a territory before a

detailed one, even if the first, big picture is not fully understood.

The basic seismic shooting and recording geometry is shown in fig-

ure 2.
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FIG. 2. Conventional reflection seismology geometry.

Data 1s taken along the x-axis where shot points are 1located at
all possible positions x = s; likewise, recording geophones are at all

x = g. The midpoint ¥

1]

(g+s)/2 is halfway between the geophone and
(g-s)/2 to denote half the offset between the

shot and geophone. The transformation between (g,s) recording parame-

the shot and we use h

ters and (y,h) interpretation parameters is

y = 52 (19a)
; S (19b)

Traveltime t may be parameterized in (g,s)-space or (y.h)-space.
Differential relations for converting are given by the chain rule for

derivatives, namely

dt _ dtdy  digh | 1 (4t gt
dg - dy dg * dh dg - 2 [dy * dh] (20a)
dt _ dt dy dt dh 1 (dt dt
ds ~ dy ds ' dh ds 2 [dy dh] (20b)
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Let the geophones descend a distance dzg into the earth. How will their

traveltime change? Equation (6b) gives
L
2

i

The minus sign has been introduced because equation (6b) described a
downgoing wave, but we now wish to see an upcoming wave. Suppose the
shots had been let off at depth dzs instead of at 2z = 0. By similar

reasoning equation (6b) gives

3
dt  _ |1 _ [dt)2
dz, Lz (%) ] (210)

We also need a minus sign here because the traveltime in the experiment

must decrease as the shots are pushed downward.

Now suppose we simultaneously downward project both the shots and
geophones by an identical amount dz = dzg = dzs. The traveltime change
is the sum of (2la) and (21b), namely

dt = =—dz <+ — dz = {——— + -—] dz (22a)
g s

or

o
c*

o
N

o [-v% [%;_Jz] [;% [%':']] (22b)

This expression for dt/dz may be substituted into the time shifting
partial differential equation which operates on the wavefield P(x,z.t),
namely equation (11):

opP dt

9z dz

E

(11)

@

F4
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L L

ap 1 dt)2 : 1 dt)2 i oP
8z [7-[35]] +[;é“[a‘s]] at (23)

Finally we can express everything in midpoint-offset coordinates by sub-
stituting from (20):

1 1

2
ti2 1 1 (dt dt}2 apP
hJ] *[7‘4‘[:17‘&‘]} st (2

(=1

I

[~

LA U N T A
oz -~ v2 4 |dy

Equation (24) is the heralded DSR equation. We will interpret it in two
simplified cases. First take the case of a flat, layered earth. The
traveltime is then independent of the midpoint, so we may set dt/dy
equal to 0, obtaining

apP 1 1 (dt)2 aP ;
%z - ‘2[7'4“[33]] at (25)

We see that except for some scaling factors of 2, we are back to the

single square root equation (6b).

What do single square root equations do? Basically, they describe
waves. Throwing a pebble 1into a pond, we see an expanding spherical
wave. In (x,z,t)-space, it is a cone with circles in (x,z2) and
hyperbolae in (x.t). Ordinary wave equations take an (x,z)-space pic-
ture and let it evolve in time, showing, for example, an expanding
spherical wave. Single square root equations take an (x,t)-space pic~
ture and let it evolve in depth, showing, for example, expanding and

contracting hyperboloids.

A second interpretation of equation (24), the DSR equation, is for
zero-offset sections. A common midpoint gather is @ symmetrical func-
tion of offset so that at zero-offset we may take dt/dh to be =zero.

Then (24) also becomes a single square root equation.



189

%
arP 1 1 (dt}2 opP
-a—; = —2|:';-2- - -4- [E-y-] } H (26)

Eventually we will see that properly formulated, equation (26) can con-
vert hyperbolae to smaller hyperbolae and finally focus them to a point.

Such a process is called the migration of a seismic section.

Having seen the big picture with the double square root equation
and having shown that important applications lead to the single square
root equation, we will now proceed to & variety of techniques for imple-
menting single square root equations. These techniques are the tools of

reflection seismic data analysts.



