STABILITY OF FINITE DIFFERENCE BOUNDARY CONDITIONS

Jeff Thorson

Abstract

What are sufficient conditions on R to guarantee that the extrapo-
lation of the differential operator u, = -RU 1s stable? There are two
possible conditians of stability. The first (weak) condition 1s to
require that at large enough z, the energy in u{z) is bounded by the
initial energy of u(0). This is eguivalent to the condition that all
eigenvalues of R have a positive real part. It will be seen that in the
case of an operator R with absorbing boundaries u_ = ru, it is suffi-
cient that r lie in the upper right-hand quadrant of the complex plane.
The second stability condition is stronger: the energy in u{z) wmust be
less than or equal to the 1initial energy u(0) for al? z. For an opera-
tor with absorbing boundaries, this stronger condition s satisfied
when, additionally, the following is known to be true:

«(S) <= etz

where x(S) 1s the condition number of eigenvectors S of R, and m 1is the
smallest real part among the eigenvalues of R. Normal operators that
satisfy the weak stability criterion automatically are strongly stable.
But this is not true for the class of non-normal operators, among which
are R with absorbing side boundaries. Whether the above -equation is
satisfied or not depends on the particular operator R at hand. There are

indications of what to do to enforce the above <condition: one is to
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increase the size of the attenuation factor €. Interrelations between R
and the second difference operator T that may simplify the task of
satisfying the strong stability condition are given in the following

sections of this paper.

Arbitrary Boundary Conditions

This discussion is restricted to operators 1in the frequency domain,
that 1s, time has been transformed out. Generally, a one-way linear
wave equation operator can be put in the form uZ = -Ru in which the x-
direction has already been discretized. R then is an n by n matrix and u
is an n-vector, where n is the number of points in the x-direction of
the differencing grid. The Crank-Nicolson approximation to this dif-

ferential equation in z is

Az Az
(1 + 5 R)u = (I - —-E-R)u0 (1)

where Uy is the initial condition (i.e. the solution at a previous

Tevel). Arbitrary boundary conditions specifying the relation between
two points on either end of the grid are Uy = ryy and Uiel = "pln-
Tacking these relations onto the matrix A=(I + (Az/2) R), which, say, is

tridiagonal, we have the equivalent system

1 —rl u0 0
L ) Y 4
ap By a4
X b4 x : = (2)
x X x

OLn—l Bn n+l Y dn
_rn 1 n+1 0

L. - L - -

For instance, when reth equal 1, the boundary condition (B.C.) is

zero-slope: u, = u,. If r

0 1 ,r =10, the B.C. is zero-value, where the

I n
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zero value is attained midway between gridpoints G and 1 {respectively n
and n+l). Now these end equations can always be absorbed into the adja-
cent equations by performing one step in the Gaussian elimination pro-
cess. That is, note that system (3) is formed from (2) by subtracting a

multiple of the first (and last) equation from the second (and next to

last) equation.

¥ 1 ]
(B,+1,%5) a, Y1 4
* B, aj
x X X
X X X : = NG
X x x
OLn—l Bn—l OLn
OLn—l (Bn+rnan+1) un dn

L I N I

In terms of the norm of u, (3) 1s the proper system to use, because
the n-length vector u represents the actual energy in the grid rather
than the (n+2)-length vector u in {(2). This can be shown by re-deriving
(3 in the following manner. Consider that the discrete system A is now

infinite-dimensional. The banded matrix A continues w1thoup<]1m1t:

_ o - -
Yt G-y
%1 P % Y e
o By Mo L) = 4 (4)
Yk+2 42
- JL .

Applying an internal boundary condition at point k of the grid is
equivalent to “clamping" the solution there. The solutions on either

side of this clamp then can proceed independently of each other. For
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example, the proper B.C. to "clamp" a tridiagonal operator at point k is
uk = ruk+1. Adding the appropriate multiples of this equation to the
k-th and (k+l)st equation in (4), it 1s possible to zero out the adja-

cent off-diagonal elements, which results in a decoupled system:

oy (Btr 10"k+1)§ 0 Y
0 E(Bkﬂo‘k-—l) Het+1 Yet+1
N
(5)

As a practical matter, we must assume that a It is interest-

= o N
ing to note that the decoupled systems havektﬁe sa;ZIboundary condition
only when r is 1, 0, or -1. In the special case of absorbing sides,
Im(r) > 0 1is known by experience to leak energy out while Im(r) < 0
feeds energy in. The opposing B.C.’s 1in (5) exhibit opposite behavior
-~ Im(r~1) < 0 implies Im(r) > 0, or one B.C. is stable while the other

is unstable. More will be said later on what we mean by stability.

A similar clamping at the other end of the segment of dnterest
yields the finite dimensional system (2). The norm of the solution vec-
tor u in (2) then naturally measures the energy in the segment
(ul,...,un). As a matter of fact, if r = 1 or -1 and «, 8 are all equal,
the infinite dimensional problem is divided this way into a sequence of

identical finite systems.

Let’s proceed with the discussion using a concrete example: the
45-degree finite difference operator in the fregquency domain (Jacobs et
al., 1979). Assume constant velocity now. Later 41t will be allowed to

vary. The operator, with the shift term removed, 1is

2
v/AX"T
g‘g‘ = ‘RU, R = l'-—-—-———-———g (6)
v/Ax T0
25 + ———

2s

k+1
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where s = ¢ + jw, v = velocity, and TO' the second derivative differenc-

ing matrix, is defined to be

>

Expanding (6) out into the Crank-Nicolson form (1), yields

Au = (al + (v + B)To)u = (al + (v - ﬂ)TU)un = AUuu (7)

where a = 4s2AxZ/v and B = 2s. Notice now that fncorporating the B.C.
u0 = rlu1 into A is equivalent to incorporating it into T_ . That 1s,

o]

u
0
added to [ -{v + B) a+ 2{v + B) -{v + 6)] Uy = 0
Y2
Yo
yields [ ] a+ (2 - rl)(v + #) - (v + ﬁ)] Uy = 0.
Yo
So (7), with the general two-value boundary conditions upg = Ty and
u = r u_ added in, 1s equivalent to
n+1 nn

(al + (v + 8)THu = (al + (v - B)T)u0 {7a)
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where now T = T0 + B, that 1s,

1 -1 . _
-1 2 -1 _
1 rl
-1
A A
To = B = (8)
-1
-1 2 -1 l-r
ol

-1 1 N ]

Actually this trick can only be done for the 15-degree and 45-degree
expansions of the wave equation operator. In higher order expansions
(Godfrey et al., 1879), T2 terms arise in (7). Later 1t will be seen,
however, that putting the two-term boundary conditions, matrix B, into T
in the higher order expansions produces a consistent higher order boun-
dary 1in the Crank-Nicolson system (7). The manufactured B.C. will have
the same effect as the original two-term B.C., e.g. it will continue

absorbing.

To summarize this section, a two-term boundary condition (a) may be
incorporated into adjacent equations to decouple a larger systsm into
smaller systems, or (b) may be further incorporated, in the case of a
45-degree system, into T itself. This tndicates that 1f we assume that
(7) 1s stable, the stability of the system (7a) does not primarily
depend on the frequency-dependent coefficients « and 8, but only on the
value of r, the boundary coefficient. The stability of (7a) is examined

in greater detail in the next section.

Stability Conditions for Non-normal Matrices

By stability we shall now mean the strong condition that if wu
satisfies the differential equation

u -Ru (9)
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then |ju]] £ ||u0|| for any depth of propagation =z be]owH the ;nitia]
wavefield Ug- An eqguivalent condition is that R satisfy x (R+ R )x 20
(Brown, 1979). Additionally, if (9) is stable in this sense, so is the
Crank-Nicoison form (1) that is derived from (9). For a proof of this,
see Godfrey et al. (1979). It should be mentioned that these conditions
apply to solutions propagating downward {+z) and forward in time. Other
directions necessitate various changes 1n sign 1in various places (Jacobs
et al., 1979). Incidentally, throughout this paper the term positive
real will mean that all eigenvalues of an operator have their real parts

positive: Re(xd) z 0.

A normal matrix is one that commutes with its conjugate transpose,
NNH = NHN. Normal operators are precisely those that have a complete
set of orthonormal eigenvectors, so that N can be decomposed 1nto QHAQ
where Q 1s unitary, and A 1s diagonal (Noble, 1969). It is easy to
prove that given a normal R, ||u]|| £ ||u0|| if and only iF R 1s positive
real, that 1s, the eigenvalues of R all have a positive real part. The

proof goes as follows:

Let us assume a slightly more general form for R. R may be non-
normal, but assume that it sti11 has a complete set of eigenvec-
tors, 1.e. it 1s not defective. Then R can be diagonalized to A by
a similarity transformation (Noble, 1969}).

R = s las

Change coordinates, w = Su, Uus=3S "w

w
€
"

'
=
w
L

w = -SRS "w = -Aw
2

The formal solutions "3’ given the 1nitial values w are

0’
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wj = exp(-xJAz)woj. Clearly the eigenvalues kj (in A) must all
have their real parts greater than zero if w is to be bounded for
all z. Therefore [|w]] £ Ilwoll for a1l z iff R is positive real.

But

- -1 -1
[Hull < IS lll*llwll < LIS THbklwgll < TIs “1IxlISTi*llugll.

But if R is pormal. then a unitary $ exists, i.e. |[S|| = IIS—III =
1. Therefore, ||u|]| £ ||u0|| iff R has positive real eigenvalues,

which proves the assertion.

A stronger bound can be wrung out of the above proof. If m s the
smallest real part among the eigenvalues Ai,

-m2
flwl] = Ilwnlle

Hull s «(S)Iluglle™ (10)

where x(S) is the condition number of the matrix of eigenvectors S of R.
The condition number 1s a measure of how far S 1s from orthonormality --
x(S) = 1 if S is unitary. Now the inequality (10) holds for any R that

is diagonalizable, which is a more general case than for a normal R.

We are now in a position to see that for reflecting boundary condi-
tions (zero slope or zero value) the 45-degree equation (6) is strongly
0 T0 in turn 1s
positive real and is normal. It only remains to see that the eigenvalues

stable, because R shares common eigenvectors with T

of R are positive real -- it turns out that they are. See Brown (197%)

for a proof.

Now, for more general boundary conditions, r in (8) may be complex,
which makes T = T0 + B non-normal. In particular, this happens for
Clayton and Engquist’s absorbing boundary conditions (Clayton, 1977).
Though the stronger condition |Ju]] < ||u0|| doesn't hold, 1t is
encouraging to see in {10) that |Ju]| has an exponential bound, so even

if the solution grows a bit at the beginning, it has to stabilize at
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large enough z. We can draw more inferences from the dineguality (10):
it is only in a particular range of z that [|u|| can be greater than
I|u0ll, depending on a) how close to zero the smallest eigenvalue of R

is, and b) how far the eigenvectors S of R deviate from orthogonality.

For wave equation migration, typically one applies (7) or (7a) in a
large number of small steps of size Az. If the operator doesn’t change,
(10) is still in effect, where z is the total distance migrated. Sta-
bility is guaranteed -- it is only a matter of going deep enough so that
exp(-mz)x(S) £ 1 is guaranteed. The vectors u at intermediate depths are
somehow "conditioned" by repeated application of the operator so that

they eventually stabilize.

Now if the operator does change at each step, for example in model-
ing a variable velocity medium, it is conceptually possible that u may
grow without bounds. Suppose at the j-th z-level a new operator R is

k|
applied. The cumulative operator (matrizant)

probably has eigenvectors that fluctuate about some average set of
eigenvectors -- as long as «(3) is small -- and so (10) can be applied
roughly to this average set. To restate, smoothly varying velocity is
not foreseen to be a problem, provided that a) R is always positive
real, and b) the non-normal boundary conditions appliied are sensible

enough so that x(S) is reasonably small.

There 1s a potenttially more serious problem. If another operation
is applied to u between downward continuation steps in 2z, it is possible
that the "conditioning" of u may be effectively destroyed by this inter-
posed operation. This may very well be done in a systematic manner so

that the only bound that applies tis the much weaker

n —mJAz
Ilunll < [II x(SJ.)e ]Iluull (11)

=1
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There are indications that this happens in shot-geophane migration, when
the shot operator and geophone operator are alternately applied to the
two-dimensional u field. The shot operator may upset the <conditioning
of u by the geophone operator at each step, and vice versa. A way to
guarantee that this doesn’t happen is to 1impose the condition

+m Az

f(S) € e 3 (12)

at each step. This involves a knowledge of Sj and XJ for each step,
which is hard to come by. This will be examined later for the case of

the 45-degree operator.

Boundary Conditions and the Expansions to the Square Root Operator

The monochromatic one-way wave equation operator R of (9) may be

approximated by a continued fraction expansion (Godfrey et al., 1979).

VTV/Ax®
VTV/Ax?

VTV/Ax2
+-—-——_—.¢—_
28 + -

(13)

<[—

2s +

Here s = ¢ + iw and V is a diagonal matrix containing the velscity func-
tion v(x). VTV 1is now the second derivative operator with the general
boundary conditions included:

2
(2-—rl)v1 -v.,V

-V

1v 2v2

2

VIV = (14)
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For the rest of the analysis we are going to ignore the 1/V term in
front of the continued fraction (13), for reasons given in Brown (1979)
and Godfrey (1979).

When the denominator of the continued fraction is premultiplied

out, 1t yields a Crank-Nicolson form which 1s a generalization of (7a):

n i
Mu = [z a (vivyIlu = 4 (15)
1=0 9

The first criterion to meet is consistency, that is, whether the B8.C.

incorporated into VTV does the same thing as an equivalent B.C. imposed

on the system (15). We have seen that this is trivially true for the

first two terms of the expansion (13}, since 1in that case (15) only goes

up to the first power of VIV. Although 1t won't be proved, there 15
good indication that it is true for all higher orders in (15). For exam-

ple, starting with VTV of the form (14), the boundary condition on

(VTV)2 can be shown to be

(1 -2 1)Yy=(1 -r)

where * represents a convolution. This is virtually the same as the

boundary condition

Now 1f all the powers of VTV in (15) have consistent B.C.’s, their sum
certainly will. This seems to be a natural way to generate higher order

B.C.’s for banded matrices broader than a tridiagonal.

With the consistency question out of the way (albeit crudely), the
most important point with respect to stability is to guarantee that R is

positive real. This has been shown to be true for normal matrices R by
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Brown (19739). The rest of this section will be concerned with deriving a
sufficient condition that will guarantee R 1s positive real, even though
it 1s not normal due to the boundary conditions i1mposed on VUTV. Namely,
this condition is that VTV be both positive real and "“positive ima-
ginary" so to speak. Let’s state this as a theorem. First, we know
that R shares a common set of eigenvectors with VIV. Second, the eigen-
values of R are related to those of VTV by the relation (13) with
XR' xVTV replacing R and VTV respectively. As in the previous section,

T can be written as T_ + B, where T

0 and B are given 1in (8).

0
Theorem: It 1s sufficient that l-rl. 1-rn 11e in quadrant I of the com-
plex plane for u, = ~-Ru to be stable. That 1is, Re(xR) 2 0 only 1ir
Re( I_rl.n ) 2 0 and Im( l-rl'n Yy =2 0.

By stability we mean the weaker condition that R have positive real
eigenvalues. The proof of this follows an induction argument parallel
to that given 1in Brown (19739) and in Jacobs (1979):

First assume (l-rl) and (l—rn) lie in quadrant 1. The eigenvalues
of VBV, which are vf(l-rl). vi(l-rn) and zero, all 1ie 1in quadrant
I. Applying Muir’s rule number 3 (Brown, 1978) to both VIV = VTOV
+ VBV and VTV/i = (VTUV + VBV)/i, observe that the eigenvalues XVTV
of VTV 1ie in quadrant I. Now (13) can be rewritten in terms of
the eigenvalues as the recursion formula

1 for k

- = 2,4,6,....n
Ak - 2 or k = 3,5,7,...,n (16)

Assume n s even. Now since Iarg(XVTV) arg(2s)| < x/2.

A=A /25 has to be positive real. By i1nduction, assume \ is
0 VTV 2 k-2

positive real. Since 2s and 2sAx /XVTV are positive real, and all
combinations of sums and inverses of positive real numbers are
positive real, it follows that xk is positive real. Note +that no
products were involved in the derivation, because it is not neces-
sarily true that the product of positive real numbers remains posi-

tive real. We can also prove stability for odd-power expansions of
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(16) by noting that

A, = ——— (16a)

is positive real. Then the exact same dinduction argument can be

used as in argument given above. This proves the theorem.

Absorbing Boundaries

This section will discuss qualitatively some stability bounds on
the 45-degree equation with absorbing sides. Assume now that velocity

is a function of 2z only.

A common absorbing side boundary used {(here, at least) is one given
by Clayton {1877) -- a version derived by combining the 15-degree equa-
tion with a B.C. that is inhomogeneous in the Crank-Nicholson formula

(7). 1In the frequency domain, it is given as

1+ 1¢mAx/vk
" ~ 1 - 1awa/vk

where k = 1,n. Now M is always positive real, and 1is positive ima-
ginary when « 2 0. By the previous theorem this ensures that R is posi-
tive real. R, however, 1s not normal, but still has a complete set of
eligenvectors for any value of (real) a«. Propagation can be unstable
only during times when the condition (12) fails. Is this ever possible?
There are some tunable parameters that are at our disposal to suppress
the instability if 1t does happen to occur -- mainly the parameter s.
Also, to get a better bound of the type (10), 1t 1s possible to derive a

variant of (10) that applies to the Crank-Nicolson system (1)}. It is

1 - ‘lz-xm
ull s e(s)*| |[—— x|
1 + — Xm

2
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It can be seen that we would 1ike to have the minimum eigenvalue Am as

large as possible.

In the specific case of the 45-degree operator with constant velo-

city, (16) reduces to

v/Ax
AR * Zeax . (17)
VXT 2sAx
where AT represents each eigenvalue of T, and s = e + iw. For the

midrange frequencies, the two terms in the denominator of (17) are
roughly of the same size (assuming reasonable values for v and Ax), so
eigenvalues of R are at their approximate maximum. When w 1s small, the
second term in the sum dominates, so that xR = 2s. It is important not
to let XR drop to zero, but this is easily handled by setting e > 0 in
the second term. When w is large, or for very small XT’ i.e. for low
wavenumbers, the first term dominates. Then XR = vsz/Zssz. Gen-
erally, the larger the dimension of our grid 4in the x-direction, the
smaller the minimum AT becomes. The e in the first term of the denomina-
tor of (17) has virtually no effect on the stability of R, compared to
the advantageous effect 1t has 1in the second term. It seems then that
the first term may be somewhat uncontrolilable, and the only way around
disturbances possibly generated at the boundaries by a large first term
would be to restrict the frequency range or otherwise filter out low

wavenumbers from u before operating.
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