A SQUARE ROOT RECURRENCE FOR CAUSAL BRANCH-CUT FUNCTIONS

Jon F. Claerbout

Attempts to find extrapolation equations for elastic waves have led
to techniques that are applicable to a variety of physical problems
other than scalar waves. In chapters 9.1 and 9.6 of my book, Fundamen-
tals of Geophysical Data Processing, we find a useful mathematical

representation of many physical problems:
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where A and B (1) may be scalars or block matrices and (2) may be func-
tions of ax or of 1its Fourier representation ikx. Inserting either one
into the other and neglecting z-derivatives of A and B we have wuseful

starting points for the development of a wave extrapolation theory:
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Proceeding with only (2a) we wish to find a representation of (AB)*
which will be the negative of an impedance functien. An impedance func-
tion R has & positive real part which is necessary for the stability of

the desired extrapolation equation
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L
-3-% = (AB)% = -Ru (3)

As a mechanism for obtaining the desired square root, consider the

recurrence

2
AB - )\
Sael T MY NT s (4)

Assuming convergence we may solve (4) for S°° obtaining

5, = AB = (-R) = R = -k (5)

The major questions are (1) whether or not convergence will oaccur, {(2)
how to choose X\ and Sn so that convergence 1s rapid, and (3) how to
ensure that the intermediate approximations Sn are themselves impedance
functions. Before launching into a general theory, which I don’t under-

stand anyway, let us consider some examples.

Scalar Waves

Try
2
= k% = (2.l
ab = kZ = kx 3 (6a)
v
Aos— (6b)
-iw
Sp = v (6c)
We find the familiar 15-degree scalar result
TS
s, = 9 (7)

1 v -2iw
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Laplace Equation

Try
ab = —kz = ki (8a)
A= 1 (8b)
SU = 0 (8c)
We find

s, = K (9a)

K2 -
S, = 1+ 5 (9b)

1+ kx

2
x
would turn out to be % kx. But the answer as graphed in figure 1 turns

Looking at (8a) you might at first think that the square root of k

out to be Ikxl which is positive for either positive or negative values
of kx as it must be 1in order to be an impedance function. So the down-

ward continuation equation for Laplace’s equation is

a

u

Py = -Ikxlu (10)
Speed of Convergence
Inspecting the recurrence
2
S = X+ AB - A (4)
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FIG. 1. The square root for Laplace’'s equation 1s the absolute value
function.

we note that 1if X = S°° where Si = AB, then from any starting point S0 we
have convergence 1n one step. Likewise, 1if Sn is close to Sw, then
insensitivity to a poor choice of X is apparent from writing the
recurrence as

xsn + AB

el T XA s (o

It turns out that if A is chosen equal to Sn our recurrence reduces to
Newton’s square root recurrence which 1s well-known to have quadratic
convergence about the starting point. A disadvantage of X = Sn is that
it rapidly dincreases the number of powers of AB in the operator Sn.
Another approach is to start the square root recurrence for Laplace's
equation at X = S_ =1 as shown in figure 2. Clearly, better conver-

0
gence about kx = 1 has come at the cost of poorer convergence at kx = 0.

Causality

Consider again the recurrence (4) where X 1s thought of as the
causal differentiation operator [say X = -Jw + € or X\ = (-'h.»)l—e as

€20]. We could also take A to be the causal integration operator.
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FIG. 2. Extrapolation equation for Laplace equation. Approximations

converge quadratically about kx = 1.

2
AB - A
S.,1 = M+ X—I—E;- (4)

We intend to show that Sn is an impedance function for any n, not just
at n = oo, An impedance function has just two properties: first, it s
causal, and second, its frequency domain representation has a positive
real part. We will assume that these properties are possessed by Sn and

then show that they are also possessed by Sn Naturally, we will also

be assuming that the AB we are given +1s of the form of a squared
impedance function. Such a function may be called a causal branch-cut
function (or cbec function) because 1t 1s permitted to l1ie everywhere in
the compiex plane except on the negative real axis (since 1ts phase
angle is double that of the impedance function). An impedance function
squared in the frequency domain is one convolved with itself in the time
domain; hence the numerator AB - Xz is obviously causal. The denomina-
tor A + Sn is the sum of two impedances, so it is an impedance. ‘Like-

wise its dinverse 1is an impedance, so we can combine everything to see

that § is causal.
n+l
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Positivity

I have not yet been able to show analytically that the recurrence
preserves positivity. However, a simple numerical test case was con-
vincing. Take AB = exp(7176«/180) which has an exact square root near
the 1imaginary axis. This should be a hard case, and & poor choice of A
and S0 should be able to cause one of the Sn to jump over 90 degrees.
When starting values for A and 50 were taken at various places along the
positive imaginary axis, convergence to 88 degrees always resulted:; and
none of the approximations ever exceeded 30 degrees. Taking negative
imaginary values for A\ and S  resulted in convergence at -92 degrees

0
with all approximations along the way having negative real parts.

It was interesting that convergence was always achieved although
sometimes slowly. This leads me to the assertion that for any cbc func-
tion AB the square root recurrence will converge to the positive square
root {1f the sign of the imaginary part of AB 1is 1in agreement with the
sign of the imaginary part of A and of S0 for all frequencies w. The
Laplace equation was a degenerate case in which AB did not have either
frequency dependence or an imaginary part, so it was appropriate to take

A and S0 to be real.

Elastic Waves

For simplicity take the elastic wave problem to have been
transformed from physical variables to p-wave, s-wave varfables. Then

we have

|1 0 21 0 za-z 0
AB = kalo 1| 7 Kyfo 1] @ -2 (12)

Taking

e 1 0 e 1 0
SU = = lo 1 and A = TU 1 (13a,b)
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The matrices are all diagonal

order forms are

v
1

161

and things proceed rather simply. First

2
“Tu | s (14a)
a [} 1]
ez + =
a
..1 kz
ﬂ“ + X (14b)

1.5 T l l
1+ _|
.5 —
'
5 8,1
1

-1

FIG. 3. Dispersion relations for elastic waves.

2 2 2

It is notable that S_ fits exactly not only when @ = kza but also

B
when wz = k:ﬂz. The forms

(14)

do not fit as well as the 15-degree

equation in the small kx region but they should fit better elsewhere.
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Bullet-proofing

In acoustics the ab function for pressure 1is

2

. 2 . e 0 13 |
ab = kz = 7 P 3 53 (15)
v X X
which may be written as
N T
% L NEW I -t
ab = B |(-1w)? + v|p® 8 o % [p% & p v —%— (16)
v 3] 9 4
X X p v

Letting D1 and 02 denote diagonal matrices and the positive symmetric x

differential operator be denoted by T we have

a2

—u = D.[I + TID,u (17)
2 1 2
9z
L

We are experienced at finding [I + T]* with the Muir expansion and we
could obviously find other expansions by means of (4). When asked to
find a square root representation for (17) what we do is Jlet DlD2 = 02

and solve

3 L L L
7% = DI+ Tl (18)

Substituting (18) 1into 1tself does not reduce to a form which may obvi-
ously be identified with {(17) because the diagonal matrices do not com-
mute with T. Physically we know that D1 and D2 will commute with T over
regions 1in which there 1s no lateral material variation. 1In SEP-16 we
showed that equation (18) dissipates the function w*w, so we regard w as
an energy flux variable. The justification for this is still not com-

pletely understood but it seems to begin as follows. Recall (2a) and

{(2b)
. [u} ) [ab 0 ][u] g
2 v B 0 bal v (13)
9z
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In acoustics this takes the form

2 [u Oy OiTer 0 1(%2 9 |[u
a_ (20)
2 |v 0 02 0 I+T| (0 D1 v

9z

Defining new variables

w1 DZ 0 [u}
= (21)
w2 0 D1 v
we obtain
2 "1 00 0 et 0 1["1
: 2 |w = 0 D.D 0 I+T||w (20)
az 2 172 2

Both equations are now the same so we can abandon one of them. Bringing

a diagonatl D2 = DIDZ to the left side we have

) — w!' = [1 + T] w! (21)

The square of equation {18) is stil) not quite the same as (21). It is
known (see for example Hildebrand, Methods of Applied Mathematics, p.
74-80) that there exists a transformation which simultaneously diagonal-
izes [I + T] and converts the quadratic form (w')*D-Zw' to the form w'w.
Also, most of the book Discrete and Continuous Boundary Problems, by F.

V. Atkinson, seems to relate to this type of problem.



