GAUSSIAN ELIMINATION ON A BANDED MATRIX

Jeff Thorson

Abstract

Two FORTRAN routines included in this paper can be used to solve
banded linear systems. The routines use a Gaussian elimination algorithm
tailored to the specific case of a banded matrix. Instead of the n3/3
multiplies required to reduce a full matrix, a banded matrix can be
reduced in about nm2/4 multiplies, where n 1is the dimension of the
matrix and m is its bandwidth. Only the nonzero diagonals of the matrix
need to be stored. Algorithm 2 does no pivoting. Algorithm 3 performs
partial pivoting. Partial pivoting is inherently stabler than no pivot-
ing at all, though the difference in output between the two algorithms
is probably negligible for regular wave equation operators. The algo-

rithm Tistings contain all relevant documentation for their use.

Introduction

Gaussian elimination is undoubtedly the most widely used method for
solving linear equations. The discussion in this section is not meant to
be an analysis of the method, but a brief summary. For an excellent

treatment on the subject see chapter 2 of Stewart (1973).

Consider the linear system

Ax = b

143

144

where A is an n by n matrix, b is the given right-hand side vector, and
X is the unknown vector. Gaussian elimination proceeds to solve for x by
first factoring A into a lower triangular matrix L and an upper triangu-
lar matrix U. Subsequently x 1s found by solving the much easier sys-
tems Ly = b and Ux = y. That is,

A = LU,
LUx = b,
ux = L 'b,
x = U7,

The method 1s presented graphically in figure 1.

Notice that the right-hand side only enters into the solution in steps 2
and 3. The bulk of the work in the algorithm lies in step 1: factoring A
into L and U. This takes roughly n3/3 multiplies for a full matrix A.
Doing steps 2 and 3 1s much cheaper; together they comprise n{n-1)
floating multiplies. Therefore, if the matrix A, i.e. the operator, is
to be applied to a number of different right-hand sides, the LU decompo-
sition need only be done once. The routines given later take advantage
of this property. Each is divided into two subroutines: ’'band,’ which

performs the LU decomposition, and ’'solve,’ which solves for x.

Pivoting

By examining the algorithm below, it can be seen that only n divi-
sions need to be made, one for each iteration of the outermaost loop.
The divisors are called pivots. Nominally, the pivots are the diagonal
elements of A. However, in the course of the calculation the current
pivot may by chance become very small with respect to the other ele-
ments. Once this happens the accuracy of the reduction degrades
rapidly. To avoid this problem, the rows of the linear system can be
permuted to bring another, larger element into the position of the diag-

onal element. Obviously, exchanging rows in A does not affect the

145

0
A =
2)
y| = |b
3 ullxl = ly

FIG. 1. The stages in solving Ax = b. By convention, L is wunit Jlower
triangular (1's on the diagonal) whereas the diagonal elements of U are
arbitrary.

answer, as long as the matching rows in b are also exchanged. The banded

property of A may disappear, however.

Partial pivolting involves examining the elements in the column
beneath the current diagonal, choosing the largest one, and interchang-
ing the two rows to bring it into position as the new pivot. If the
largest element found happens to be near zero, it indicates the original

matrix is nearly singular.

Algorithm 1, written in pseudo-FORTRAN, outlines Gaussian elimina-
tion on a full matrix with partial pivoting applied. L and U are
overwritten onto A. L fits 1n the lower triangular half of A, while U
fits dinto the wupper +triangular half. L has an implicit unit diagonal
{(which is not stored). The diagonal of A holds 1/U{k,k). P(n) s an
integer wvector that holds pivoting indices. Finally, the solution x
overwrites the initial right-hand side b.

146

Algorithm 1: GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

Given A{n,n)
LY Decomposition:

For k = 1,n
Find p(k) >= k such that
abs(A(p{k).k)) = max { abs{(A{i.k)) : 1 >= k }
If A(p(k),k) = 0, A 1is singular. Exit.
For § = k,n
Interchange A(k,3), A(p(k),3)
Continue

A(k,k) = 1/A(k, k)

For i = k+l,n
A(1,k) = A(1,k) * A(k,k)
For § = k+l,n

A(1sJ) = A(1’J) = A(1ik)*A(k)J)

Continue

Cantinue

Continue

Given b{n)
Solve:
For k = 1,n-1
Interchange b(k), b(p(k))
For i = k+1l,n
b(1) = b(1) - A(4,k)*b(k)
Continue
Caontinue
For k = n,1 (decrement)
For 1 = k+l1,n
b(k) = b(k) - A(k,i)*b(1i)
Continue
b(k) = b(k) * A({k,k)
Continue
End

147

Banded Matrices

One can take advantage of the distribution of 2zeros 1in a banded
matrix in two ways. First, index limits can be shortened, ensuring that
iterations are only made over nonzero terms. Second, only nonzero diago-
nals of A need be stored. The two FORTRAN programs below, algorithms 2
and 3, are designed to solve banded matrix systems. They follaw the
logic of algorithm 1 closely, but with different indexing and storage.
Algorithm 2 performs Gaussian elimination without pivoting. A is stored
as a series of diagonal vectors, and its LU decomposition fits nicely
into the original storage for A. Algorithm 3 is a version implementing
partial pivoting. Unlike the non-pivoting version, the LU decomposition
may not fit in the original space allocated to A -- the row switching
done by pivoting introduces nonzero elements into A that 1ie outside the
band. Figure 2 illustrates this. An additional space of n by half the

bandwidth must be allocated to A to hold these nonzero elements.

swidch

S ———— N ——————

m

FIG. 2. An extra (m-1)/2 vectors are required to store the permuted
rows of A. Two rows no farther apart than (m-1)/2 can be interchanged.
Any rows farther apart than this can’'t be interchanged, for the
corresponding pivot s always zero. Notice if m > 2(n-1)/3 + 1, the
banded form requires more storage than the original matrix!

148

Algorithm 2 (without pivoting) requires (m+1)n complex storage points,
and performs approximately n(m+1)2/4 multiplications. In comparison,
algorithm 3 (with pivoting) requires 3/2 as much storage, and perfarms

9/4 as many multiplications.

Is there any advantage in using one algorithm over using the other?
Pivating is numerically more stable, and will fail only when the matrix
itself is close to singularity. When does the non-pivoting case break
down? The answer is given in a theorem in Stewart (1973, p. 120), which
states that a pivot A(k,k) will be nonzero if and only if the leading
principle submatrices of A are nonsingular. In many applications the
matrix A represents an operator derived by some finite differencing
scheme. This theorem implies that 1if the operator 1is well defined no
matter how coarse the discrete grid on which it 1s applied, a non-
pivoting algorithm should never break down. Most wave equation opera-
tors fall into this category: they are diagonally dominant and “"look the
same" on any grid scale. The time Factor saved in applying the non-
pivoting algorithm will be approximately 2 to 1. One should be aware,
however, that if the conditions of the theorem above do not hold, elimi-

nation without pivoting will definitely produce garbage.

REFERENCE

Stewart, G.W., 1973, Introduction to Matrix Computations: New York,
Academic Press.

Algorithm 2: GAUSSIAN ELIMINATION ON A BANDED MATRIX

O 00 0000000000000 000000O000O00O00

10

30

Subroutine band

This subroutine performs an LU decomposition
on a banded matrix A. A 1s overwritten with
L.U. L is unit lower triangular, U is wupper
triangular.

A(i,3) <-- U(i,3) for 3 .gt. i,

A(i,1) <-- Inverse of U(1,1),

A(i,4) <-- L{i,3) for 4 .1t. i.

(The unit d1agonal of L is implicit.)

The accompanying subroutine ’'solve’ uses the
output of this routine to solve for a par-
ticular right-hand side.

Storage:

The diagonals of A (and L,U) are stored in
the input array a{(n.m) where n is the dimen-
sian of the system and m is the bandwidth. m
must be odd. The columns of a(n,m) are as-
sumed to be symmetrically placed about the
central diagonal of A. The relation between
elements of 'A’ and 'a’ is:

A(i,3) = a(i,j-i+(m+1)/2).

Pivots always 1ie on the main diagonal. If a
very small diagonal element is encountered,
m is returned zero. Caution: small pivots
may give inaccurate results.

subroutine band(a,m,n)

integer g,h,i,j.k,m,n,r

complex a(n,m)

real eps
r=(msl)/2
eps = 1.0e-6

do 20 k = 1,n
if(cabs(a(k,r)) .le. eps) goto 99
a(k,r) = 1.0/a(k,r)
h = r-1
i = k+l
if(h.1t.1 .or. i.gt.n) goto 20
a(i,h) = a(i,h) * a{k,r)
i = h+l
g = r+l
if(g.gt.m .or. j.gt.(r+n-1i)) goto 40
a(1,3) = a(1,3) - a(i,h)*a(k,q)

149

150

3 = i+l
g = g+l
goto 30
40 continue
i= i+l
h = h-1
goto 10
20 continue
return

99 m=20
return
end

Subroutine solve

Solves the system Ax = b given a right-hand
side b. Solution x is overwritten onto vec-
tor b. a(n.,m) contains the LU factored form
of A generated by subroutine band.
subroutine solve(a,b,m,n)

integer i,3,k,m,n,r

complex a{n,m),b(n)

00000 0n

r = (m+l)/2
c Forward elimination

do 100 k
i

1,n-1
k+1
J r-1
110 if(j.1t.1 .or. i.gt.n) goto 100

b(i) = b(i) - a{i,3)*b(k)

i = +1

j=3-1

goto 110
100 continue

t + n

c Back substitution

do 120 k = n,1,-1
i = k+l
j = r+l
130 if{(4.gt.m .or. i.gt.n) goto 140
b(k) = b(k) - a(k,j)keb(1)
i= i+l
J = g+l
goto 130
140 continue
b{k) = b{k) * a(k,r)

151

120 continue
return
end

Algorithm 3: GAUSSIAN ELIMINATION ON A BANDED MATRIX
PARTIAL PIVOTING

e e e e e e ey A e A e i e e e o e b e e e e e e e e

Subroutine band -- Partial pivoting version

This subroutine performs an LU decomposition
on a banded matrix A. A is overwritten with
L.U. L is unit Tower triangular, U is upper
triangular.

A(i,3) <-- U(i,3) for j .gt. i,

A(1,1) <-- Inverse of U(1,1),

A(i,3) <-- L{1,3) for 3§ .1t. 1.

(The unit diagonal of L is implicit.)

The accompanying subroutine 'solve’ uses the
output of this routine to solve for a par-
ticular right-hand side.

Storage:

The diagonals of A (and L,U) are stored iin
the input array a(n,m) where n is the dimen-
sion of the system and m is the bandwidth. m
must be odd. The columns of a(n,m) are as-
sumed to be symmetrically placed about the
central diagonal of A. The relation between
elements of 'A’ and ’a’ 1s:

A(i,3) = a(i,d-i+(m+1)/2).

Pivoting:

Pivots are selected from the column below
the current diagonal element. Row inter-
change information is stored in the 1integer
vector p(n), which is wused by subroutine
solve. The horizontal dimension of ’a’ must
be at least m + (m-1)/2 : the extra (m-1)/2
superdiagonals of A provide space far the
interchanged rows. If a very small pivot is
encountered, m 1s returned zero. Small
pivots indicate a near singular matrix.
subroutine band(a,m,n,p)

integer g,h,1,3,k,m,n,p(n),r

complex a{(n,l),c

real eps,max,d

OO0 00 0000000000000 0000000O0000O0000000O0 <0

152

r=(m+l)/2

eps = 1.0e-10

doe 10 i = 1,n

do 10 j = m+l,m+r-1

a(i,3) = cmp1x(0.0,0.0)
10 continue

do 20 k = 1,n

c Find pivots
max = 0.0
i= k
j=r
25 if(i.gt.n .or. j.1t.1) goto 30
d = cabs(a(i,j))
if(max .ge. d) goto 35
max = d
p(k) = i
35 iz i+l
Jj = j-1
goto 25
30 continue

if(max .le. eps) goto 99
c Switch pivot rows

if(p(k) .eq. k)} goto 40

i=r
i = r+k-p(k)

50 if(i.gt.m+r-1 .or. i.gt.n-k+r) goto 40
c = a(k,1)

a(k,i) = a(p(k),3)
a(p(k),j) = ¢

i = i+l
J = j+l
goto 50
40 continue
c Decompose A

a(k,r) = 1.0/a(k,r)

h = r-1
i = k+l
60 if(h.1t.1 .or. i.gt.n) goto 20
a(i,h) = a(i,h) % a(k,r)
3 = h+l
g = r+l
70 if(g.gt.m+r-1 .or. j.gt.n+r-i) goto 80

a(1,3) = a(1i,3) - a(i,hyxalk,qg)
i = j+l1

80

20

99

o0 o0 0 000aaonan

110

100

130

g = g+l
goto 70
continue
i= i+l
h = h-1
goto 60
continue
return

m=20
return
end

Subroutine solve -- Partial pivoting version

Solves the system Ax = b given a right-hand
side b. Solution x is overwritten onto vec-
tor b. a(n,m) contains the LU factored form
of A generated by subroutine band. p{n) con-
tains the pivoting information returned by
band. :

subroutine solve(a,b,m,n,p)

integer i,i,k,m,n,p(n),r

complex a(n,1),b{n),c

r = (mrl)/2
Forward elimination

do 100 k = 1,n-1
¢ = b(k)

b(k) = b(p(k))
b(p(k)) = ¢

i = k+l

j=r-1

if(j.1t.1 .or. di.gt.n) goto 100
b(i) = b{(i) - a(i,3)*b(k)

i= i+l

is= j-1

goto 110

continue

Back substitution

do 120 k = n,1,-1
i= k+l
J = r+l
if(i.gt.m+r-1 .or. 1.gt.n) gotc 140

153

154

b(k) = b(k) - a(k,3)*b(1)
i = 1+l
j = j+l
goto 130
140 continue
b(k) = b(k) * a(k,r)
120 continue
return
end

