MUIR’S RULES FOR MATRICES: ANOTHER LOOK AT STABILITY

David Brown

Much attention has been given to the concept of stability in recent
SEP wvolumes. This is certainly understandable, since for computational
purposes, the term “instability" is closely synonymous with "total use-
lessness." A well-known example occurs when deriving one-way wave equa-
tions: By expanding the square root operator in a Taylor series we
obtain a sequence of one-way equations with dispersion relétions of
arbitrarily high accuracy. Yet all of these higher-order eqguations
beyond second order are unstable, and therefore simply cannot be used
for the extrapolation of wavefields in processes such as migration. The
solution to this problem has been known for quite some time: the square
root operator can be expanded using the rational fraction expansions
suggested by Francis Muir and first reported by Jon Claerbout and Bjarn
Engquist in SEP-8. In that report, Engquist showed that for the con-
stant velocity case, square root approximations derived in this manner
always yield stable one-way wave equations. Furthermore, the “"15-degree”
and "45-degree"” equations turn out to be the first two equations given
by this expansion. The dintroduction of ‘“causal positive real" or
“impedance" functions in SEP-15 and -16 (articles by Brown and Claer-
bout) gave more insight into the stability question for these operators.
Muir’s rational fraction expansion fit the definition for causal posi-
tive real (CPR) operators, and, furthermore, the expansion could be
formed making use only of three simple rules for the combiration of CPR

operators (Muir’s rules).
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Successfuil as it was for finding stable extrapolation equations for
constant velocity or stratified media, Muir’s theary seemed to run into
problems for earth models containing strong lateral velocity variation
(see examples by Bloxsom and Kjartansson in SEP-15). Some quick work
reported by Godfrey, Muir, Claerbout and Jacobs in SEP-16 showed, how-
ever, that at Teast for the 45-degree equation, stable extrapolation, or
"bullet-proofing," was indeed possible. The object of the present paper
is to show that Muir’s rules of combination can be generalized in a
simple way to include the laterally varying case, and hence to show that
alt higher-order rational expansions can be bullet-proofed. Since the
introduction of lateral velocity variation results in equations that
cannot be Fourier-transformed over the lateral coordinate, we must con-
sider matrix systems of equations rather than scalar equations; and
hence the generalization to lateral variation will yield "Muir’s Rules
for Matrices." In addition, we will discuss briefly the questions of
side boundary condition stability and internal boundary conditions since

these quesions are closely linked to the problem of bullet-proofing.

The Scalar Theory

Let us begin by reviewing the theory of causal positive real opera-
tors. A passable definition for & CPR operator is that, when Fourier-
transformed over all space variables and Laplace-transformed over time,
such an operator will have a positive real part if the time derivatives
are realized in a causal manner. Moare specifically, let s denote the
Laplace transform of 6t.1 Then causal realization af at is equivalent
to requiring that Re{s) > 0. To test the transformed operator we set
Re(s) > 0 everywhere and check to see if the result has a positive real

part. If it does, it is a CFR operator.

As an example consider the 15-degree operator:

1 In this paper, subscripting of 9 will denote partial differen-

tiation with respect to the subscript, i.e. 8 = 8/8q. Super-
scripting denotes the inverse of subscripting, 'i.e. integration:
a7 = 1/(8/8q)
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(1)

(2)

Since kx is a purely real quantity, and by assuming causality Re(s) > 0,

A
it is clear that Re( L15 ) > 0, and hence the 15-degree operator is CPR.

The usefulness of CFR operators is easy to see, also. Let us solve

problem
£ Ly
with in1tial conditions
p(x.t.220) = p_(x.t)

Transforming over t and x, we get

aA A A A
ae = L 5 plz=0)

i
>

The solution is

A A
-Re(Lls)z -1Im(L15)zA
=g e Py

the

(3)

(4)

(5)

A
Since Re{ L15 ) >0, it is clear that the solution does not blow up, so

the differential equation (3) is stable.
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The Matrix Theory

Now 1let’s discretize equations {3) in the x-direction. Let

1

P p(kAx,t,z). Then if we wuse the wusual second-order second

derivative operator, (3) becomes

1 v t
8,0 = TP ¢+ " 07 (Pyyy ~ 2P * P g) (6)

If we have no boundaries in the x-direction, then (6) can be writtan as

an infinite system of equations.

Pr-1 Y I Y ST Y
Let o = |p, and M = Vz 0 1 -2 1 0
24x 0, 1 -2 1.0
Prs1
\ P

and then equation (6) can be written as

1 t
azq = [-ant + M8 Jq (7
Laplace-transforming over time and setting Moo= (s/v)I - M/s, we have
9,9 = -Mg (8)

Now define ||q||, the norm of q, by

2 %
[lall q q (9)

where q* is the complex-conjugate transpose of the vector g. We can say

that the differential equation (8) s stable if |[]|q|] is a non-
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increasing function of z, or equivalently that

0 2
5 lall® = 0. (10)

Substituting (8) into (10), we see that this 1is equivalent to the

requirement that

q*(ﬁ + ﬁ*)q 2 0 for all pessible choices of q, (11)

ie. M+ ﬁ* must be a positive semi-definite matrix. If M happens to
have a full set of orthonormal eigenvectors, this is equivalent to the
requirement that the real part of the eigenvalues of M be non-negative.
This 1s very much 1like the condition for a CPR operator. 1In fact we
only need add the condition that Re(s) =2 0 1n equation (8) to assure

that (6) is a stable equation for extrapolation in z and +t.

So far we have shown that the conditions for stability carry over
to the matrix case. Next we would like to find out what the rules of
combination are for the matrix case. Recall that for the scalar case
Muir's rules are (see SEP-16, p. 143)

i) Multiplication R* = aR if a >0
by a positive
scalar
ii) Inversion R’ = 1/R
1114) Addition R’ = R1 + Rz

where we mean that R, R1 and R, being CPR operators implies that R’ is a

2
CPR operator.

For the matrix case, we want the following to be true: 1f M is a
matrix CPR operator, then by using one of the allowed rules of combina-
tion we want to get another CPR operator M’. This is equivalent to say-
ing that 1f M+ M* 20,1 then M' + M'™* > 0. As we will demonstrate

M+ M* 20 is shorthand for " x*(M + M*)x 2 0 for all x ,"
i.e. M+ M 1s a positive semi-definite matrix.
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later, the following are rules for the combination of matrix causal
positive real (MCPR) operators. They are somewhat more restrictive than

the rules for the scalar case.

Muir's Rules For Matrices

1) Multiplicatian M* = T M 1FT=T">0and M and
by a positive T can be diagonalized by
definite the same similarity
matrix transformation (this

implies as well that M
must be a normal matrix).

2) Inversion M* = M if and only if MM* = MM,
1.e. M is a4 normal
matrix. Note that,
equivalentiy, M must be
diagonalizable by a uni-
tary transformation.
This will be possible if
M has a full set of
orthonormal eigenvectors.

3) Addition M> =M + M (no restrictions on this
rule)

The first rule says that an MCPR operator M can be multiplied by
&8 positive definite Hermitian matrix T and yield an MCPR operator if M
and T share the same eigenvectors. The requirement that M and T have
the same eigenvectors is rather restrictive, although it is probably not
really necessary. The example given below falls into this category,
however, so for our purposes it 1s not too severe a restriction. It is
also possible to get around the requirement that T be a Hermitian
matrix. The appropriate tricks to do this are also discussed in the

example below.

Since T is Hermitian, if T and M are to share the same eigenvec-
tors, M must be a normal matrix, i.e. it must be diagonalizable by a
unitary transformation. (A unitary transformation 1s a similarity
transformation where the transformation matrix 1s unitary.) An
equivalent condition is that MM* = M*M. The requirement that M be a
normal matrix also comes up in the inversion rule, so this again is not

really an additional restriction.



131

It should be pointed out that the requirement that all MCPR
matrices we consider be normal matrices implies that those matrices must
be diagonalizable. Diagonalization of the operators amounts to reducing
the matrix problem to a scalar problem to which we can then apply the
scalar theory. So Muir’s rules for matrices can be summarized by saying
that if the problem can be diagonalized then Muir’s (old) rules will
apply. However, the formulation of the rules in terms of matrices can
turn out to be more convenient to use since then we need only do simple
checks of matrix properties rather than worry about actually diagonaliz-

ing the problem and checking eigenvalues.

Proof of Rule 1

IF T 1s & Hermitian matrix, then there 1s a unitary matrix Q such
that

T = QAQ (12)

where At is a diagonal matrix cantaining the eigenvalues of T. If M can
be diagonalized by this same unitary transformation then we can find Am'

another diagonal matrix, such that

M = Q AmQ. (13)

Now note that since T and M share the same eigenvectors, they commute

with each other, and hence since T is Hermitian,
™+ (TM)* = T(M+ M), Using (12) and (13). we have therefore that
* * *
™ + (TM) = Q At(Am + Am). (13)

Since M+M* >0 and T = T* > 0, it 1is clear that the right-hand side of

{14) s a positive definite matrix, and hence

™ + (M)* > o (15)
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Proof of Rule 2

(I'11 just show the "sufficient” part of the proof.) If M is a nor-
mal matrix, then we can find a unitary matrix Q so that (13) holds.
Then

- *®, -1 -1 %
M + M = Q (Am + A ) (16)

Since Am+A: > 0 by assumption, M lawl * s g,

The proof of Rule 3 1is obvious ("left to the reader").

Now we will show that these three rules can be used to construct
Muir’s square root recursion formula for one-way wave eguation opera-

tors. For the matrix case, Muir’s recursion can be written as

-1
Sn+1 = sl + (sI + Sn) T {17)

where T = T* > 0 is a (Hermitian) positive definite matrix and s is
again the L?place transform of at. Sn is an approximation to
Soo = (sZI + T)/z and is essentially the operator on the right-hand side
of & one-way wave equation. The usual "starting value" for the recur-
sion is So = sI. We will use a standard inductive proof: If we take S0
to be causal, 1.e. Re(s) > 0, then Re( SO Yy > 0 and so S0 is an MCPR

operator. The formula for S1 is

1
Sl = sl + rry T (18)

We can consider 2s to be a diagonal MCPR matrix. By rule 2, 1/2s is
also MCPR. By rule 1, (1/2s)T 1s MCPR, because since 1/2s is diago-
nal, we can choose any vectors we like for its eigenvectors, so we will
use the eigenvectors of T (thus satisfying the requirement that T and
1/2s have the same eigenvectors). By rule 3, S1 is therefore an MCPR
operator. Now observe that S1 has the same eigenvectors as T since it
is the sum of a diagonal matrix and a matrix with those eigenvectors.

In fact, it 1is easy to see by inspection of equation (17) that al?l? of
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the rational fraction expansions Sn share the same eigenvectors as T.
Now assume that Sn is an MCPR operator. Then by rule 3, sl + Sn is
also. Using the fact that sI + Sn has the same eigenvectors as T and is
hence a normal matrix, we have by rule 2 that (sl + Sn)—l is also MCPR.

Then using rule 1 followed by rule 3, we get that Sn is an MCPR opera-

+1
tor. We have thus shown that every Sn is MCPR. However, we haven’t
gquite shown that every one-way wave equation derived in this way is
stable. The (Laplace-transformed) differential equation corresponding to

Sn can be written as

S
"

-1
-A Snp (19)

where A is an (infinite) diagonal matrix containing values of the velo-

city as a function of x along its diagonal, i.e.
"ty (-2Ax)
v(-Ax)

v{0)
v({Ax)

T is now a matrix approximating something like vzaxx or ax<vzax). {see
SEP-16, p.86, equation 10). The difficulty arises because the multipli-
cation of the MCPR operator Sn by A~ is not covered by any of the rules
given above. There are fortunately two (equivalent) ways out of this
problem. The first is Bob Godfrey's trick (SEP-16, p.87). We first
make a change of variables in equation (19) by defining a new variable

q:

e

q = A'p (20)

Equation (19) becomes

Q
0

-

s\

-A'fsnA‘ q (21)
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and then

1 i
-% %

(s + S:)A q (22)

) 2 *

35 |lall q A

The trick is the following: since x*(3n+3:)x > 0 for all choices of
R

x # 0 when Re(s) > 0, then obviously we can write x = A “g. And since

-1
A *> 0, the right-hand side of (22) must be negative for all nonzero

choices of gq.

An equivalent way of looking at this 1s to begin by defining a new
norm. A vector norm is essentially just any positive definite quantity
which can be defined as a measure of the size of a vector. Any book on
matrix theory will give a1l the specifics on this. Up until now we have
used the definition given in equation (9) for a norm. An equally good

definition, however, is the following:

2 _
IIOIIA E g Aq (23)

Since velocity is always a positive quantity, IIqlli will always be a
non-negative quantity, which 1is essentially the reason that this defin-
ition can be used. Now by substituting in from eguation (13), we have
that

9 A *
a7, llatly = q (Sn + 5 )4 (24)
from which it follows immediately that
5] 2 .
5;‘|IQ|IA £ 0 (25)

and so the differential equation is stable.
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Internal Boundary Conditions

When we solve an equation Tike (19) for & medium where the velocity
function has discontinuities in the lateral direction, the difference
approximation must be implicitly satisfying some "internal boundary con-
ditions" at the interface in the medium. As an example, let’s consider
solving a downward-continuation problem in a medium with a vertical
interface at x = 0 using the 15-degree equation pZ = -A_ISIp (see figure

1). 1If we were to do this using a pure differential equation, then the

15-degree equation would be

FIG. 1. Earth model with a vertical interface at x = 0.

s
P, = TP+ 57 (26a)

in the medium on the left and
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P, = TTP+ 357 (26b)

in the medium on the right. 1If, for instance, we were using an acoustic
earth model where the compressibility was assumed constant across the
interface, and so the velocity discontinuity was due only to a change of
density across the interface, then the appropriate interface conditions

would be

[p(0)] = 0 (27a)
and

vl (001 = o (27b)

where [q(x)] = q{x+) - q{x-) is the jump in ¢ at x. The analytic solu-
tion of (26) cannot be determined uniess we use these extra conditions
(27). When we discretize the problem in x, however, the resulting sys-
tem of equations can be solved without specifying any spectal conditions
at the interface. This must mean that when solving the discretized sys-
tem, we are implicitly satisfying some conditions at the interface. It
might be nice, for instance, if those implicit conditions were some

approximation to (27).

It turns out that these implicit interface conditions are deter-
mined by the choice for the tridiagonal matrix T in equation (19). One
of the choices for T given by Godfrey, Muir, and Claerbout (SEP-186,

p.86) corresponds to discretizing the equation

1 1 2
e T T E 0900 e

in the x-dfrection, giving

9p(x) _ -____}___ _ 1 2 Ax
3z = v(x){sp(x) ;;;;E{v (x+2 Yp{x+Ax) (29)
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- (v2(><+§-x—) + vz(x-?—))p(X) + vz(x-g—x—)p(x-AX))}

To find out what the implicit interface conditions are, look at equation
(29) for x = 0 and x = Ax. Using the velocity model given above, we get,
by taking the first term on the right-hand side over to the 1left-hand

side and multiplying through by 25Ax2,

vaptax) - (Viav2ip(o) « vip(-m) = o(ax®) (30a)

and

vip(?Ax) - 2v§p(Ax) + v;p(o) = O(sz) (30b)

If we add these two equations together, we get

va(p(28x)-p(ax)) = vA(p(0) -(p(-80)) + O(ax’) (31)

which is at least a first-order approximation to (27b). Subtracting
(30b) from (30a) yields

vzp(ZAx) - 3v§p(Ax) + (v§+2v§)p(0) - vip(-Ax) = O(sz) {32)

We can expand p(2Ax) and p(Ax) 1in Taylor series in terms of p(0+) and
p(-4x) in  terms of p(0-). The term p(0) can be written as
p(0) = %(p(0+) + p(0-)). Then {(32) becomes

v2 \l2
1 2 2 1
PR PILAC R AP

> - 5o [p(0-) = o(ax) (33)

which approximates equation (27a).

Other choices for the tridiagonal matrix will result d1n different
interface conditions. For example, any straightforward difference

approximation to
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1 1 2
pZ = -;T;T[s iy v (x)axx]p {34)

will implicitly specify the conditions

[p] = O and [Px] = 0 (35)

wherever discontinuities of the velocity functien occur.

The consideration of internal boundary conditions can offer another
point of view for bullet-proofing. By “"bullet-proofing"” we have come to
mean that we are stabilizing a differential equation which, although
stable in the constant velocity case, becomes unstable when lateral
velocity gradients become too large. In particular, we are concerned
with destabilizing effects that vertical discontinuities in the velocity
function have on the difference approximations. Since the 1introduction
of interfaces will result in reflection and transmission effects at
those interfaces, it is possible to consider bullet-proofing as a pro-
cess which assures that the transmissions and reflections at these
interfaces do not become too large. In other words, +if we make sure
that the dimplicit interface conditions are associated with reasonable
reflection and transmission coefficients, then the difference approxima-
tion can be considered "bullet-proof." Thus, we expect (29) to be a
bullet-proof approximation because the interface conditions associated
with it are the same as those conditions for the true physical problem.
Here at Stanford we have found the internal boundary condition point of
view for stability to be a useful one when dealing with one-way elastic

equations (see article(s) by Clayton and Brown, this report).

Side Boundary Conditions

An assumption we have made 1n the arguments above for the stability
of matrix systems d1s that there are no side boundary conditions.
Although this is a common simplifying assumption in any work of this
kind, it would be nice if, for instance, side boundary conditions could
be incorporated into Muir’'s Rules for Matrices. As of yet, this has not

been done, but some work for the 15-degree equation, given below, may
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prove to be a useful first step.

Let us consider the problem of downward c¢ontinuation in a semi-

infinite medium x 2 0 using the 15-degree equation,

%
Ag> = -Sip. (36)

Here,

1
[ = s+ o (37)

where now, T is not & Hermitian matrix, but consists of a Hermitian part

plus a non-Hermitian part which contains nearly all zeros except in the

upper left-hand carner:

4 “
0 0 0 0 0
2 2 2 2
~v1 v1+v2 —v2 ] 0
2 2 2
0 -v2 v +Y3 -v3. 0
2 T, - .. 2.~
AT = .. ., .. = AX{T + A} (38)

where T = ?* , and hence
2
-2v1 v

AX A = (39)

The semi-infinite vector p is given by p = (p_,
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—
"

A = .. and

The reason T is not Hermitian is that the first equation in the

system

(36) is identically zero. This 1s because we need the element p0 in the

vector p so that the finite difference approximation for ax(vzaxpl) can

be written down. The element P is determined by the boundary condi-

tions, which we will specify later.

In the same way as before we would like to show that (36)

stable equation. Using the norm definition given above, we have

3 2 * *
3 IH@HA -p (S1 + Sl)p

where

*
S, + 8% = 2Re(s)I + [—%a,—l)'raf [—"-+5-]

The first two terms on the right-hand side of (41) are MCPR since
?*. To show that

a 2
'a"'z"llpllA < 0,

we only need show that

=

i

n

*
w| A
P [Zs * s]p z 0

For all possible choices of p. Writing out (43) explicitly, we
that

is a

(40)

(41)

(42)

(43)

have
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2Re(s) 5
2 2] |p
Is| 21s] 0
[pO pl] s p
> 0 1
2]s|
_ 1 (e - _ Re(s) -
= -_-_E{Spﬂpl + spopl] 3 PgPq z 0 (44)
2(s| Isl

An oft-used absorbing boundary condition is

P, - P
1 ] )
e = sa Po (45)
Substituting (45) into (44) to eliminate P, » we get

aEOp0 2 0 (48)

which means that 1f a = 0, (45) is an absorbing boundary condition and
(42) 1s satisfied.

In summary, it seems that when side boundaries are present, 1in
order to get a stability estimate T1ike (42), the side boundary condi-
tions must be used to take care of the slightly non-CPR parts of the

difference operator. The side boundary problem deserves some further

work.
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