STEP SIZE IN OPTIMIZATION PROBLEMS

Jon F. Claerbout

In non-linear iterative optimization we jump along in the direction
of the gradient. Estimates of the distance to the gradient must be
based on either (1) a good understanding of the physics involved, or (2)
prior estimates of the second derivatives, which are known as the
covariance, the Hessian, or the Levinson, matrix. The distance esti-
mates are troublesome for reasons that will be given; a suggestion for

managing them will be made.

Spatial Non-constancy of Second Derivatives

The usual least-squares problem is to vary x 1in order to minimize

E = (d - ax)2 (1)
Note that

= a = constant function of x (2)

The final results of many practical problems are not significantly dif-

ferent if we minimize absolute errors:

E = |d - ax]| (3)
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Note further that
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-a sgn (d - ax) (4)

a2 8(d - ax) # constant function of x
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It is important that an apparently minor change in problem formulation

converts & constant function te a delta function.

More general non-linear optimization problems are usually
approached by a Taylor series that is truncated at second order and ends

up looking like equation (1).

Stochastic Behavior of Second Derivatives

In solving a filtering problem in which there are 106 observa-
tions, 1t seems quite reasonable to find 100 filter coefficients, since
the gradient of the error norm is a 100-component vector. The second
derivative matrix (covariance, Levinson, or Hessian matrix), however,
has 100 x 100 or 104 elements. Does this make sense, 1in "view of the
fact that the square root of the number of data points is 103?

The appropriate philosophy could be to somehow reduce the number of
degrees of freedom in the second derivative. We can reduce the dimen-
sionality to one if we introduce a new variable a« that scales the gra-
dient vector g = QE/3x. Now we can forget about the second derivative of
matrix E with respect to the vector x, and think only of the second

derivative scalar of E with respect to «.

Following a less extreme philosophy, we could include @« times the
gradient, plus # times the previous gradient, and then use the distance

implied by this two-by-two covariance matrix.
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A Suggested Method

Newton's method, drawn from a Taylor series to second order with

the gradient zeroed, is

dx = > {6)

In the multivariate problem the second derivative is a matrix. A better
approach than using the second derivative would be to use the second
finite difference operator. It averages the second derivative over a
region of interest, reducing the space-variability problem. Think about
descending through the continental drainage pattern: Over what dx
should we do the differencing? Obviously, over the dx that separates
the last two function evaluations. Let 9, denote the gradient deter-

mined at the present place and denote the previous gradients.

g
t-1
For a scalar problem we replace equation (6) by

t
dx, |, = o——— (7a)
t+ 2 gt gt"].
dxt_%
Let us abbreviate this expression:
g
dx' = = t (7b)
8¢~ 94-1
dx

dx' = - - (8)

We may interpret (8) as follows:
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(1)

(2)

(3)

If gt is approximately equal to the negative of gt—l' the
step size will be halved. This is good.

If gt is approximately equal to gt-l' the step size will be

drastically increased. The results will probably be good.

If the denominator 1s negative we are on a non-convex surface.

This step size estimate 1s worthless.

In the Case of a Non-convex Surface

Some physics offers the best help here. Otherwise, decide how many

iterations you can afford, and decrease |dx|/|x] linearly at each step.



