CHANGING THE SNELL PARAMETER OF SLANT STACKS

Richard Ottolini

The motivation for changing the Snell parameter of slant stacks 1is
that a finite offset spread makes it 1impossible to coherently stack the
full time range of the data for a given Snell parameter. Early reflec-
tions stack well for large Snell parameter values while late reflections
stack better at smaller Snell parameter values. Therefore, it 1s advan-
tageous to be able to take slant stack sections which have stacked well
over a certain time range and transform their Snell parameter into
another for which this time range may be absent. A transformation
operator to accomplish this 1is derived from the double square root equa-
tion 1in a manner similar to the derivation of the deviation operator of
Yilmaz and Claerbout (SEP-16).

The conversion operator comes from simultaneously applying the
operators which migrate and diffract a slant stack section to and from a
zero-offset section. However, the migration 1is done with the Snell
parameter with which the slant stack section was created and is then
diffracted using the new Snell parameter. The combined effect of both
operators is a partial migration. The method of Yilmaz and Claerbout
which manipulates frequency domain exponential operators by summing
their exponential arguments will be used here. The slant stack migra-
tion operator from Ottolini (SEP-15) is
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where Y is the midpoint normalized wavenumber and H1 is the slant
stack coordinate transformation of the offset normalized wavenumber for

a given Snell parameter p:
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Hy = vp, = sin @, (2)

The diffraction operator is simply the complement of eguation (1).

Therefore, we take the conversion operation from Snell parameter p1 to

p2 to be
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The operator of equation (3) is relatively expensive to implement
in the frequency domain. Since the partial migration effect of this

operator moves the data less than a full migration, a finite difference
approximation of equation (3) 1s adequate. The spatial derivative
operator contained in Y is removed from the square roots by a binomial

expansion about small Y, i.e. small midpoint dip. Each square root of

equation (3) becomes
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It is convenient at this point to convert H to sines and cosines accord-

ing to equation (2):
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Expanding a11 four sguare roots in equation (3) gives
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The wavenumbers kz and ky = 2Yw/v are then Fourier-transformed result-

ing in the differential equation
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Equation (6) is a 15-degree equation similar to equation 10-4-7 in Fun-
damentals of Geophysical Data Processing. This equation may be imple-
mented by splitting the first (retardation) and second (diffraction)
terms in the manner of Kjartansson (SEP-15). Ancther implementation
scheme 1is analagous to Yilmaz’s (SEP-18), which uses & post-NMO devia-
tion operator. A moveout correction is added to equation (1), while at
the same time a compensating depth-to-migrated-time coordinate transfor-
mation 1is made in equation (6). There is an advantage in having the
results in migrated time, but the coordinate transformation 1is only
valid for flat events. The derivation of this second implementation 1s

not particularly instructive and is not given here.



