MIGRATION OF RADIAL TRACE SECTIONS

Rick Ottolini

Introduction

A radial trace is a trace extracted approximately diagonally from a
common midpoint gather. The motivation for migrating radial trace sec-
tions is that the double square root equation is simplified into a sin-
gle square root imaging theory. The advantage of a single square root
equation is that 1ts migration and diffraction 1impulse responses are
always smooth curves, unlike those of constant offset sections. Its
migration is therefore easier to implement than the migration of con-
stant offset sections or pre-stack dip compensation (Devilish). In
fact, the constant velocity aperator is the same as that for zero-offset
sections except for a rescaling of the depth axis. Radial trace sec-
tions are also easier to construct than slant stacks, avoiding end-of-
cable artifacts. However, the economic cost is similar to other
migration-before-stack schemes. The main disadvantage 1s that the
radial trace migration theory is exact only for constant velocity media

or depth-variable velocity media and non-zero-dip sections.

Diffraction Curves on Radial Trace Sections

We begin with the double square root expression describing the
point scatterer diffraction surface in midpoint-offset (y,h)—space as
determined by Clayton (SEP-14):
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,¥=0) equation (1) renders the

vt = [zz . [y . h]z}

For a point scatterer at location (z=z0
rounded-pyramidal surface shown in figure 1. Cross sections of constant
offset (fixed h) are contoured. These constant offset diffraction curves
are hyperbolic at low offsets and have flattened tops at large offsets

{h > z).

Constant offset migration schemes (Clayton, SEP-14; Rocca and Dere-
gowski, SEP-16) and partial pre-stack migration (Yilmaz, SEP-18) have
been unsuccessful in imaging such wide-offset diffractions. However, a
simple substitution remaps midpoint-offset space into a space in which
diffraction curves are always hyperbola-11ke. Offset is replaced by a

function of time

-
u

rt (2)

where r is a parameter with dimensions of velocity that will be derived
later. Equation (2) maps a diagonal 1line across a common midpoint
gather beginning at the origin, which is called the radial +trace. The
cross section of the point scatterer diffraction surface described by
equation (2) is shown in figure 2. From figure 2 it can be visualized
that a plane emerging at any angle from zero time and zero offset and
intersecting the diffraction surface will have a hyperbola-like cross
section through +the diffraction surface. This may be mathematically
demonstrated by replacing h in equation (1) by equation (2) and solving

for vt.

[

Tyt Y (3)
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FIG. 1. Point scatterer diffraction surface in midpoint offset space as
predicted by equation (1). Point scatterer located at y=0, h=0, z=150 m
with constant media velocity of 2000 m/sec. Shape of the diffraction
surface 1s pyramidal with rounded corners and peak. Contour lines are
at constant offset with spacing of 50 m. At small offsets the constant
offset cross section is hyperbola-1ike while at large offsets the cross

section has a flattened top.
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FIG. 2. The radial trace cross section through the same point scatterer
cross section as in figure 1. In contrast to constant offset sections,
the cross section diffraction curve is always hyperbotla-like. One edge

of the vradial plane 1s fixed at h=t=0.

The radial plane is flat for a

constant velocity media. In this case the radial parameter r is 800
m/sec and its Snell parameter is p = 4.e-04.
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Equation (3) describes a suite of hyperbolas with peaks displaced
along the depth axis according to the radial parameter r with limbs all
asymptotic at late arrival times. This suite of curves is depicted in
figure 3. Thus constant velocity radtial trace sections may be migrated
with the zero-offset single square root operator and the resulting depth

axis rescaled by

in order to produce a zero-offset earth image.

Derivation of the Radial Parameter r

Defining the radial parameter r in terms of the Snell parameter p
gives a lead into the variable velocity situation, because p is a con-
stant parameter of wave propagation in variable velocity media. Specif-
ically, the radial trace 1s plotted through the set of tangencies
between lines with a slope equal to Snell’s parameter and hyperbolic
reflection events on a common midpoint gather. Figure 4 illustrates
this concept. Lines with Snell parameter slopes are of interest because
summing the traces of the gather along this trajectory selects the plane
wave components of the reflections which have propagated with this Snell
parameter. These sums are called slant stack traces, for which a vari-
able velocity migration theory 1s known. It will be shown there 15 a
relationship between the reflection times of a radial and slant stack
trace - hence the possibility of migrating variable velocity radial

traces.

In order to determine the radial parameter of equation (2)., expres-
sions will be found for the radial trace time tr. radial trace offset
hr' and slant time ts from the geometry of figure 4. The hyperbolic

equation of a reflection event is

v2t = vzt + 4h (4)
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FIG. 3. Suite of radial trace diffraction hyperbolas for different
radial parameters. The point scatterer is located at the peak of the
uppermost curve. As the radial parameter is increased from zero, the
peak of each hyperbola is displaced further down the time axis. At
large time all the limbs are asymptotic.
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FIG. 4. Relationship between various variables used to determine the
trajectory of the radial trace. The radial trace trajectory is defined
as the tangency of the Snell parameter slope with the reflector curves
of flat events at all depths. The reflector curve obeys equation (4)
and the Snell parameter slope is given by equation (5). The time-axis-
intercepts of these two curves are denoted as slant time t_ and are the
slant time t_and t,. The coordinates of the tangency puini are called
radial time ir and radial offset hr'
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where th is reflection time at any half-offset h. A Snell parameter

line 1is given by

tS = th - 2ph (%)

The unknown th is eliminated from equations (4) and (5) te give

>

2 2
. 2 4h |
ts = [to + v2 ] 2ph {(6)

The tangency point is the reflection curve maximum within a coordinate
system skewed with a slope of Snell’s parameter {(i.e. linear moveout).
Therefore, the tangency point is found by setting the derivative of t

s
equal to zero:

=0 = (7)

This is then solved for h = hr:

pv 't L
h = 0[1 - p2v2] 2 (8)
Inserting equation (8) into equation (4) gives

-1
t, = to[l - pzvz] z (9)

Likewise, inserting into equation (8) leaves

] ) 22]%
ts = tu[l pv (10)

The radial parameter r 1s just the ratio of hr to tr:

2
ro= 9-2— (11)
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Since this 1s a constant velocity medium, r is constant, and the radiatl

trace equation {2) 1s that of a straight tine.

The definition of radial parameter as given by equation (11) has a
couple of satisfying implications. First, inserting this definition
into the diffractor description of equation (3) reduces the expression

in parentheses to the familar Snell parameter cosine term

O

22 2

I;"t—;;:;j + Y (12)

This cosine-depth scaling 1s the same scaling as for vertical travel-

vt

time, given by equation (9). Second, equation (11) may be derived
directly from frequency domain imaging theory ({(Claerbout, SEP-14) by

equating two definitions of the hormalized offset wavenumber H:

H=—-—-—--=—-—-=pv (13)

and solving for h/t.

Filat Reflectors in Depth-Variable Velocity Media

The radial trace descriptions of equations (8), (9) and (10) can
easily be extended to depth-variable velocity media because they have
been written in terms of Snell’s parameter, which 1is dinvariant over

velocity variations. Vertical traveltime t, 1is replaced by an integral

0
in each case to give
to
-L
heo= 5 d dtopvz[l ; p2v2] : (14)
0
K 2 2)-%
to= J dto[l - pv ] 2 {15)
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0 :
t = f dto[l - pzvz]z (16)

The root mean-squared approximation of equation (14) is very good 1in
practice. In variable velocity media, equations (14) and (15) describe
a curved line, convex timewards for increasing velocities, and concave
timewards for decreasing velocities. Examples will be shown in the next

section.

From the latter two equations a relationship between reflection

times on slant stack and radial traces can be derived.

t

r
2 2
ts = g’ dtr[l - pv ] (17)

Therefore, radial trace sections could be moved out using equation (17)
and then migrated by the frequency domain slant stack migration opera-
tor. However, it must be remember that the equations developed so far

are exact only for flat reflectors.

Examples

Radial trace sections have been constructed for the model described
in figures 5 through 7. Figure § depicts the point scatterer locations
and figure 6 the velocity model. 64 midpoint gathers with 64 offsets
with the same midpoint and offset spacing, four of which are shown 1in
figure 7, were constiructed with a ray tracing program according to this
model. The flat tops of the diffraction curves at wide offsets in fig-
ure 7 are predicted by the double square root eguation (1). Then 64
radial gathers, four of which are shown in figure 9, were mapped from
the common midpoint gathers according to the trajectories given in fig-
ure 8. Finally, the radial gathers were sorted into 64 midpoint sec-
tions of the same Snell parameter, four of which are shown in figure 11.
As predicted by equation (3), the diffraction response of point scatter-
ers on the radial trace sections in figure 11 has a hyperbolic charac-

ter.
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FIG. 7. Four of the 64 constant offset sections generated for the model of figure 5.
Offsets are (a) 0 m, (b) 200 m, (c) 400 m, and (d) 600 m. As approximately predicted by
equation (1), diffraction rves at wide offsets have flattened tops. Midpoint and offset

separat1 ons were both 12 5 m. Because the offset and midpoint separations are equal, the
split spread common midpoint gathers look just 1ike the constant offset sections. See fig-

e 1 for a geometric explanation of th1 fact. These common mi dp int gathers would come

from the following midpoints of the above constant offset sections : (a) 64, (b) 48 or 80,
{c) 32 or 96, (d) 16 or 112.
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The deterioration of the reflection events in figure 9 1s due to
three causes. First, the radial-trace-mapping trajectory runs off the
edge of the common midpoint gather, thereby truncating events. The
second cause is "moveout stretch" phenomena resulting from oversampling
a given offset trace. On figure 8 a radial trace trajectory for a high
Snell parameter has flattened out at wide offsets. Finally, a cubic
spline was used to interpolate aleng a row of offsets at a constant time
value. Such an interpolation scheme worsens when there is significant
dip between offsets, such as at wide offsets and at the boundaries, or

at the widest offset.

The next set of figures is an example of a radial trace section
from an actual dataset. Figure 14a 1s a radial trace section of the
Digicon Devilish growth fault dataset constructed for the radial trace
trajectory of figure 12 and velocity structure of figure 13. Figure 14b
1s the slant stack section constructed for the same Snell parameter as
for the radial trace section. As predicted by the relationships worked
out earlier, the time of an event on a radial trace section is greater
than the same event on a slant stack section. Figure l4c compares a
portion of the radial trace section moved out to slant time to the same
portion of the slant stack section. The refiection times are close to
equal, though as expected, the discrepancy increases for dipping reflec-

tors.
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FIG. 8. Radial trace trajectories used to map the common midpoint gathers
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structure which 1increases with depth, the trajectories are convex time=-



Radial Parameter r ) B 111

MWMMI
MWWW

=]
ﬂ

|

i

i
M

.
-

IWWMW

WWMWWW
WMMWMW

ndt

.......
LTI A
AT O it i
i

) !!Ii‘!jui

#Em?ﬁ"'f ‘ “ :9.

WW|L.1MW
VWM
o

Py 3 FF
== -

o\ Mmﬂgy WM‘&MWHWWM
e e
gmMMMMmm% MWMHWWMWU 2 MWHHW“MWWWWWWHWWWWg
s |
C S X d 0 9 S =
s °!WWMMWWWWWMWWWWWWWWW°
'i“i%“.’%i111ii‘iii*iiﬁ!?“ﬁ'ﬁii‘Eiiiiﬁii’iii!iéﬁﬁ'iii‘i%ﬁ"iﬁ%] o
IWMWWWWMWWWWWMWWMWW IWMWWWMMWWWWWWMMMWM

g

i
muuunwmmmnuumnmmu T
i

= i :":( : <5
O ! 3 KO

.,;I;!*' iy ‘ «x!i,h ‘
h F ;,:" .I“EI“J”‘X]""I"h“‘il!igl" i .-T " L

I
WMM ol AT ‘mem A N
- HWWWMMWWM | IWMTF.Hl{ | TN
L
%N%%ﬁﬂ%&@%ﬁ%w”%ﬂﬂ%mﬂhmm o WWWMWMMMMMMMMWWWMWWMMWWH@

w;lﬁ, 1”!! A

FIG. 9. The radial trace gathers generated from the commen wmidpoint gathers of figure 7
according to the mapping described by figure 8. A radial trace gather is a collection of
traces mapped for different radial parameters at the same midpoint. The Snell parameter
increases from the minimum of -1.26e-04 m/sec at trace 1 to 0.0 at trace 64 and to +1.26e-4
m/sec at trace 127. The radial trace gathers common from the following midpoints of the
constant offset sections of figure 8: (a) 64, (b) 48 or 80, (c) 32 or 96, (d) 16 or 112.
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FIG. 10. The same figure as figure 8 except showing only the radial trajec-
tories of 1tihe radial trace sections of figure 11. The Snell parameter
increment is 3.2e-5 m/sec.
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FIG. 11. Radial trac ct1ons of the model of f1gure 5 made at th traJector1es indicated

in figure 10. A radva? trace section is the set of radial traces from eac

h midpoint mapped

at the same radial parameter. The Snell parameters of each section are (a) 0. m/sec, (b)
3.2 m/sec, (c) 6.4 m/sec, and (d) 9.6 m/sec. The moveout between sections formed for dif-

ferent radial parameters is slight, as suggested by the radial trace gathe
Figures (c) and (d) demonstrate the artifacts of constructing radial trace

cubic spline interpolation: (1) end of gather cutoff, (2) moveout-like stre
ing segments using

sampling offsets especially at wide offsets, and (3) interpolating dipp
horizontal samples.

rs of figure 9.

sections by using
tch due to over-



114

*1aselep ysLiLAaag uo21bLg
a3yl 40 3un3dnu3ls K3pO00|3A SWA €T "9Id
*23s/189) §0-85°p SL Jajaweded [[Bug ayj

— 1994 O0pLe1 O3 (€01 40 peadds ® Yiim
D l LN ‘el®p PLO4-@p ‘SO3S g ‘llup SL 1asejep
(N yspLrAag uodiBig ayL Cp1 s4nbiry a3esud
01 pasnh AJo133afeJl H2B1S 71uUBLS (JuU3Ad
ﬂu -1B|J) Ppue 8dBJA} |BLPeRJ BY|l 2T "9Id
|_.||
O — 4
o) -
C
P — M
- D R \\
B mm '
> —
— (U
O . /|
D~ 3
Z
S _ o
O o
OV | |
- O
() o O O O - 7
) - - -
) - ) )
Q0 AN O L
[e)
- *33 L€0T . "33 0vLTT
N1 100 18A SN w2550



115

*(6-d3S ‘Z1Lnyss) ased aAoqe 3yl uL se painu
aJam vlep ¥oR}s-a4d ayy ssajun peouds jesyjo ayl Jo pua 3y} puokaq 93evuado 073 SaINULIUOD  Sssadoud
BuLyoels quUBLS @Yy}l ‘uOLIORJIX® @8deJ] |BLPEJ 07 ISBJQUOD UL ‘3BYT 1584 8yl 01 anp SL UOL(I8S YOBS
jue(S @Yy} jJo wo3iioq pue doj} 3yl 3e jjo-doup jdnuaqe-uou 3yl os|y -IsLou-03-|eubls ayl up juswascuduwy

LuUR  SL 3Jayjl K9S ® SL JawJo} ayj asnedaq 1eY} SL SUOLIDHAS adeJ} |BLPRJ PUBR YOBIS JUB|S UaaMlaq

9DUSJBJJLP JIYIOUY SIUIAD 1B[J JO3 A|LUO 13234403 S| uojienba jnosAow ayj asnedaq sjuaaa Bupddip Joy

aJr  (2) pue (q) usaemiaq saioupdaJosip 31s8leaJb Syl - (q) SSWULT YD2E1S JUBRLS 8yl Yyilm juswaadbe ojqul

(o) sauwil soedl [eLpeRJ Yyl sBuidq (g91) uorienba jo uop3daddod jnoaaow 3yl bBupAjdde ‘usasmoj “{q)
j¥2B3S 1uURLS ® jO asoyl ueyl Jaiesdb ade (®) sauwLy adedq |eiped @Yl *Z 3uanbLy AQ paidLpadd sy 77
8unbi 4 uip usarb uejeweded [[au§ owes SY3 YlLM P31RIJD Yo®a ‘jaselep 3(nej yimoub ysiL{raeg wuooibLg
ayl Jo suol}das (2) INOSAOW BDPJY JUR|S-03-[BLPRJ pUR ‘(q) ¥3e1S JUB(S °“(®) 8deJl leLpey ‘I *9Id

HHS espediseesss

4 o3) qamer

o o g o o
. . . . -
' 1 1 N . t T s i N L] L3 1 [} ) ) [} 3 [§ 1 ] [} 3 1 ) t t 1 [} L
NN N NN NN NN e N NN NN R
NN RN D D NN RN N PN
® N s W o= O © X N a b WN O © ® NGO W N = O
© 6 O & 6 &8 & 6 & & © ©O O O 0 O © © 60 o O O O O 0 O © © 0 o
s3uTodpTIR

Time (sec)



