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Abstract

The choice of variables for elastic extrapolation problems deter-
mines the form of the one-way wave equations. Three sets of variables
are considered: displacements, potentials, and a mixed set of variables
which eliminate troublesome axz terms from the full wave equation. The
displacements satisfy boundary conditions at internal interfaces but
presently lack a recurrence relation to generate higher order approxima-
tion. The potential variables (P and S waves) appear to have problems
similar to those of the displacements for variable velocity media,
because the equation contains a complicated term which is difficult to
factor dinto wup- and downgoing waves. The mixed set of variables have
the desired recurrence relation but fail to satisfy the boundary condi-

tions. They also appear to be unstable for variable velocity.

Introduction

In this paper we discuss the choice of state variables for the
modeling of elastic waves by extrapolation with one-way wave equations.
One use of such extrapolation operators 1s 1in the finite difference
migration of elastic wavefields. The main concern in migration is that
the reflectors be placed in their correct positions, and wusually the

accuracy of the amplitudes 1is not of primary importance. However, with
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a little more care in the way velocity variations are incorporated into
the extrapolation operators, one should be able to achieve accurate
amplitudes as well as accurate traveltimes. This means that one may
consider using extrapolation methods to provide solutions to forward
modeling problems, such as refracted body waves and surface waves. In
this SEP report, we have included a paper on modeling Love wave modes in
laterally varying media by scalar wave equation extrapolation. Our goal
is to extend the scalar methods to elastic wave problems. The first

step is to settle on a set of state variables for the problem.

With the scalar wave equation, the question of the choice of state
variables does not arise because the wave equation is already in its
simplest form. For acoustic waves a pressure {or potential) variable is

used, and for SH waves a displacement variable 1s used.

For elastic extrapolation there are several choices of variables.
The first is the displacements themselves, which are governed by a cou-
pled vector wave equation. For the constant velocity elastic wave equa-
tion, the most obvious choice of variables are the potential variables
(P and S waves), which convert the coupled vector equations into a pair
of uncoupled scalar problems. Another choice is a set of mixed vari-
ables ("mixed" for lack of a better name) that transform the equation
into one that 1looks 1like a scalar wave equation with matrix coeffi-
cients. In the sections that follow, we will discuss the relative mer-

its of each type of state variable.

To be useful an extrapolation operator has to have certain accuracy
and stability properties. An ideal operator would have the following
attributes:

1) The aoperator should have a recurrence relation which generates
higher order approximations for dincreased angular accuracy. The
existence of such an operator aids in the proof of stability of
extrapolation, and gives oane the confidence that, at least in
principle, the method is not limited by accuracy considerations.
In scalar theory this is accomplished by Muir’s recurrence rela-

tion.
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2) The operator should be stable for beth constant and variable
velocities. In elasticity it is not trivial for the operator to
be stable for constant velocity because of the large differences
between the shear and compressional velocities. Ideally one
would 1ike stability for arbitrary (and extreme) velocity varia-
tions. An example of an extreme variation in velocity that
occurs frequently is the shear velocity when a water layer is
included 1in the model. Stability appears to be linked with the
following property.

3) The operator should implicitly match boundary conditions along
internal interfaces. By implicit matching we mean that velocity
gradients are included in the operators such that they mimic the
behavior of the exact variable velocity wave equations at the
interfaces. However, since we generally dgnore transmission
coefficients in the extrapolation direction, we cannot hope to
exactly match boundary conditions for arbitrary interface orien-
tations. As a minimum condition, the solution should be exact
for layers parailel to the direction of extrapolation. The
alternative 1is to match explicitly the boundary conditions by
modifying the operator at the layer interfaces to preserve the
continuity of stress and displacements. The explicit matching
makes the operators more problem-specific, and the models more
difficult to specify. In addition to the velocity function that
the implicit matching requires, explicit matching requires the

locations and orientations of the interfaces.

Displacement Variables

In elastic theory three types of variables are wusually discussed:
displacements, stresses, and potentials. If one also happens to be
interested in differential operators, then displacements will be the
fundamental set because both stresses and potentials are expressible as
first order differentials of displacements. Thus, it is particularly
easy to +transform the displacement solution into stress to apply boun-

dary conditions, or into potentials (P and S waves) for interpretation.
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The problem with displacements is that the full operator {for con-

stant density)

T 2
(azA 62 + azB ax + axB az + axc ax +wl)u=0 (1)
horz. disp.
where u = u] =
- W vert. disp.
Bz 0 0 ﬂz ¢2 0

A = ., B = , and C =

0 az a2-2ﬁ2 0 0 ﬂz

contains both first and second order differentials in z. Consequently,

the formal factoring of the operator into one-way equations is

(az + Dl)(aZ - Dz)g 0. (2)

If the first order differentials were absent in equation (1), then D1

would equal D and 1ife would be a 1ot simpler. Expanding eguation (2)

2'
and matching 1t to a constant velocity form of equation (1) leads to the

constraints

-1 T
D1 - D2 = JA (B + B )kx

-1 2 2
and 0102 = A (Ckx o)

Solving for D, and D, we have the quadratic equations

1 2
2 -1 T -1 2 2
D1 - 1kx01A (B+B )+ A (lw - Ckx) =0 (3)
2 . -1 T -1 2 2
and D2 + 7kxA (B + B )D2 + A (lw - Ckx) = 0. (8)

Thus, in order to build up a sequence of approximations for one-way dis-
placement operators, the recurrence relation has to solve a quadratric

rather than the simpler square root of scalar theory. We have not been
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successful in finding such a recurrence relation. The chief difficulty
seems to be that the D matrices 1in equations (3) and (4) do not commute
with either A, B, or C.

At present there exist both an exact solution and a second-order
approximation to equations {3) and (4) (Clayton and Claerbout, SEP-15,
p. 233-246). From scalar theory we know that higher order approxima-
tions obtained by Taylor series expansions of the exact solution will

lead to unstable operators.

If a recurrence relation for displacement variables seems so diff1-
cult to obtain, the obvious question 1is why bother with them? The
answer is that of all the variables considered in this paper, they come
the closest to satisfying the internal boundary conditions. The boun-
dary conditions for an elastic medium are continuity of stresses and
displacements. For an 1interface parallel to the z-axis, these may be

written as (for constant density)

a’d (az-zpz)az
8% 8% [:] =0 and [[:]] =0 (3)

where the sguare brackets denote differences across the interface.

For a plane wave traveling in z-direction, the dominant term in the
gne-way approximation, as far as the boundary conditions are concerned,
is Eaxx, where E 1s determined by matching the dispersion relation. If
we write this as Elaszax the implicit boundary conditions are (see

Brown, this report)

Thus 1f we choose E, = EélE and
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we will satisfy the correct boundary cenditions [equation (5) with
az = 0], If the wave impinges at some other angle of incidence, then
other terms in the one-way operator become significant. We have not yet

analyzed this case.

In summary, displacement variables lack a recurrence relation to
generate higher order approximations. They do, however, have the poten-

tial for matching the implicit boundary conditions.

Potential Variabies

The displacement wave equation in constant velocity media can be

diagonalized (decoupled) by introducing potentials of either the form

u=VP + Vxs,

or the form

Consider writing equation (1) in the form

(H-JJu=0

where H is the homogeneous part (or constant velocity part) and J con-
tains all the velacity variations. Conversion of this equation to P and
S potentials amounts to diagonalizing the operator H. Defining the

diagonalization as

oo =(a,_ -4% and p- [P] - q 1y,

44
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the equation becomes

2 -1 .
(8,, - A" -Q"JQ)p =0.

We may formally factor the problem as

(8, + A)(8,-M)p = 013 qp. (6)

The right-hand side can be considered as a source term for the homogene-
ous operator on the left. The problem is sorting out what parts of the
source term to retain. It 1s obvious, by the way the operator 1s fac-
tored, that the left-hand side contains waves moving in both directions
in z. What is not so obvious is that the right-hand side also does. It
contains reflection and transmission coefficients for both types of
waves. It is important to eliminate the backscattering components from’
the source term. For example, 1f we inadvertently retain a reflection
term for a backscattered wave, the extrapolation operator will start a

new wave moving in the extrapolation direction.

The operator Q_lJ Q is more complicated than the displacement equa-
tion itself. Thus, by transforming to P and S waves, it would appear

that the problem has become more complicated.

Mixed Variables

In SEP-10 Claerbout and Clayton (p. 165 ff.) derive a 15-degree
type equation for elastic waves which is cast in terms of the horizontal
derivative of the vertical displacement LW and the shear stress Tz
Wave equations written 1in terms of a "mixed" set of variables such as
this turn out to have the advantage that corresponding one-way wave
equations with arbitrarily accurate dispersion relations are particu-

larly easy to find.

The equations of motion for a two-dimensional elastic medium in
Cartesian coordinates can be written as five first-order partial dif-

ferential equations in the variables (l/p)fxx. (1/p)fzz. (l/P)fxz
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(normalized stresses) and u,w (horizontal and vertical displacements).
By eliminating the variable (1/p)~|'xx and differentiating two of the
resulting equations by x, these equations can be written as a 4 by 4

system of equations in the following form:

) - bl

T T

where r= [ axu . (I/p)rZZ 1" s=[w, (l/p)axfZx 1 and the matrix

operators A and B are given by

-8 1 gﬁi:ﬁi s
XX 2 2 2
f « a
A = . B = {8)
8¢ 1 s .48 (2-gtya  Ba’
tt 2 XX 2 XX
L @ @ J

In the equation above, and 1in the following discussion we have assumed
that the density p and the compressional and shear velocities a and 8
are constants. It is then simple to eliminate s from equation (7) +to
get a second-order partial differential equation in r. In a similar
manner, a second-order partial differential equation 1in the wvariables
s = [axw . (l/p)-rxz]T can be derived. Another possibility 1s to begin
again with the five first-order equations of motion and eliminate all
variables except the normal stresses Tx and L This results in
another second-order partial differential equation describing elastic
wave propagation. The property common to all of these second-order wave

equations is their form. Each can be written in the form

azzq - (Mlatt

+ Mzaxx)q (9)
The interesting thing about equation (9) is that 1t contains no cross-
derivatives (axz terms). Other than the fact that M1 and H2 are 2 by 2
matrices, and g is a vector with two elements, the form of (9) is ident-
ical to the scalar wave equation. In table 1, we give the matrices M

1
and M2 and the state variables q for four differential equations of the
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form (9). In addition we 1include the matrix operator Q which can be
used to diagonalize equation (9) (i.e. transform it to P and S vari-

ables). By making the change of variables

a = Qg (10)

equation (9) becomes a decoupled system. Note that both Q and Q_1 have
an x-dependence of the form axx {or equivalently ki). This means that
both the forward and inverse transformations can be implemented with a

tri-diagonal operator in the (x,w)-domain.

The fact that equation {9) looks like the scalar wave equation is
what makes the derivation of the corresponding one-way wave equations so

simple. For convenience, let us Fourier transform (9) over t and x to

get
2 2
(azz + le + Mzkx)q = 0. {11)
2 2 2
Letting M = -(Mlm + Mzkx)' equation (11) becomes
(8. - M%yq = 0 (12)
2z .
2

Since p, @, and 8 are assumed constant, M (the square root of M~ } will

commute with az, and consequently (12) can be written in the form

"
[=—]

(8, + M)(3, - M)q (13)

Equation (13) shows that the factorization of the elastic wave equation
operator 1nto two one-way operators is straightforward for equations of
the form (9). The approach we can take to find one-way equations

corresponding to (9) is similar to the scalar case.

For the scalar (acoustic) equations, approximations to square-roots
of differential operators are given by Muir’s recursion formula, which

can be written as
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tion given at

which converts P and S potentials into the given variable.

azzq = (Mlatt * HZaxx)q
(1 ) a’-28° o>-° ,
‘ axw ‘2 a2 ¢252 1 kx
1 2 .2 2 2 2. 2
Tz Py 8 1 42‘(¢2'ﬁ2) 3a -28 28 w +28 kx
2 2 2 2
[ a 8 ) | @ o
- ( 2 2] (2 .2 .2 ]
1l e -8 a -28 8 2 .2 r
i 7 i3 2~ Agla-A) k2 1
p 22z a o o o X
B u 0 L a’-82  3a%-28% -wo+28%k? 282
82 22 T2 | X
L J (« B8 ] )
(2 .2 2) (2 .2 )
o ;22 @ ;Zg 2a ;Zg k2 1
Txx 2a°B 2a°B [-2 -1J 2a°8
T 2 2 1 0 2
22 e o © ~k2 -1
; 2‘:'2‘32 2‘,‘232 ~ 2‘32 X ,
1 2a2_ﬂ2
+ — 0 © 772 0
Txx* T2z « [—1 0 ] a B
T -7 1 1 -2 =1 2
xx 2z 2 2 ok -ule2p?id
a B 2 X
L o
TABLE: 1. The coefficient matrices for four of the mixed variables are
given 1in the table. In the first column are the state variables. The
second and third columns are the coefficient matrices of the wave equa-

the top. The last column is the transformation operator
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2
1w 2 w
v sn + (kx B VZ)
Sn+1 = o (14)
— + §
v n

where Sn is the operator on the right-hand side of the scalar one-way

wave equation:

a8 . SnP' (15)

In an analogous fashion, we can try the following recursion for the

elastic case:

-1 2
Sn+1 = (Ln + Sn) (LnSn + M

) (16)
Each of the elements in the recursion is now a 2 by 2 matrix operator.
Ln is a matrix which can be chosen arbitrarily, because, as we will
demonstrate below, 1f (16) converges to the exact square root, 1t will
do so independently of the choice of Ln' Assume that (16) does indeed
converge, and take its 1imit to be Sw. i.e. Sn -—= Sw. Then

S = (L, sw)'l(stm + Mz)

from which it follows that

hence, 1f the recursion converges, it converges to the square root of
2

M.

Equation (16) is a useful generalization of the Muir recursion even
for the scalar case. This 1is because the matrix Ln may be used to
improve the fit of the dispersion curve to the exact semi-circles of the
"exact square-root" equations. To demonstrate this, first diagonalize
(16). We will make the assumption that all of the matrices in equation

(16) have the same set of eigenvectors. This is a reasonable assumption
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to make, since ideally we would 1ike all the approximations to have the
same transformation to diagonal form. It is also fairly easy to satisfy
if we restrict all of the Ln to have the same eigenvectors as M. Then we
only need to require that S0 have those eigenvectors, and all Sn will
have this property. Once we have transformed (16) to diagonal form, we

can look at each equation separately:

n
el i (17)

where xn is an eigenvalue of L, Sh is an eigenvalue of Sn and m is an
efgenvalue of M. Note that the dispersion relation corresponding to

(17) can be written as

A s+ m2
(n+l) n"n
1kz - A + s (18)
n n
Also note that m2 has the form
2
2 2 w
moo= kx T T2
v

and hence m2 = —(kiw))z. Now if, at any point on the dispersion curve,
_ oy ()
A = ik

z

n , then substituting into (18) we get that

() ()
L (ne1) 1k, (s + 1k, )
r4

CO NN
.4 n

In other words, the dispersion curve for Sn will fit the exact disper-

sion curve precisely at that point. ;}so. if at any point on the
dispersion curve it should happen that sn = 1kim), then the same thing
will happen. We can use these properties to build up a sequence of
approximations that precisely fit the exact dispersion relation at many
points. If, for n =0, we pick xo so that there is an "exact fitting

point" somewhere on the dispersion curve, then sl will have that exact
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fitting point as well, and so will sz. Hence, a1l of the sn will have
that fitting point by the argument above. This means that when con-

structing s, we can choose kl in order to fit the exact dispersion curve

2
at some other point. So if Sy fits exactly at one point, the n-th

dispersion curve can have as many as n+l exact fitting points.

Figure 1 shows dispersion curves for the equation corresponding to
the first three approximations of the one-way elastic operator for some
simple choices of S0 and Ln in (16). In each case we have chosen all
the Ln to be the same, and both S0 and Ln to be scalars times the iden-

tity matrix. In figure la/ L = L0 = L1 = L2 = a-ll and Su = ﬂ-ll. Hence
we expect kz = a-l and kz = ﬂ-l to be exact fitting points for both the

P and S dispersion curves, as they are. In figure 1b, L = B-II and

1y

S za Thus, the exact fitting points are in the same place. Note,

however, that the dispersion curves in a and b are not guite the same.
In figure 1c, SD = a-ll and L = % a_ll. The exact fitting points on
both curves are therefore at kz = a-l and kz = % aul. As a result, the
S-wave curve does not fit at all at the top of the semi-circle, so vert-
ically traveling plane S-waves governed by this equation would have an
incorrect phase velocity. In figure ld we see that it is possible to
obtain a range of near-tangency of the approximate curve to the exact
dispersion curve by choosing two nearby fitting points. For this curve
s, = and L= 1.15e 1.

If in equation (17) above we choose Xo = kl = -+ = -iw/v, we
recover Muir’s wusual recursion formula; and hence, the differential
equations associated with the rational approximations to the square root
will have dispersion curves which are the same as those of the
corresponding scalar equations. The one difference is that the form of
the one-way equations will be slightly different. The "5 -degree" equa-
tion corresponding to the variables s = [axu, (l/p)*rxz]T will be

_de
ds « -1
3w Q9 . ;19_0 s (19)

which when the matrices Q are substituted in becomes
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FIG. 1. Dispersion curves for various choices of So and L in the recur-
sion formula

-1 2
Sn+1 = (L + Sn) (LSn + M

)

for the square-root operator 1in the variables q = [axu.(l/p)‘rZZ]T

5"11, L =all ; in b) S_ u'll, L ﬂ'lx ;

ine)ys = a-II, L = %u_ll; ind) S = a'll, L = 1.15¢ *I. The curves

are: Slo(so1id line), S2 (short—dasﬁ line), and S3 {(long-dash line).

In a) SO

n
n
n
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1 28 1 1
5 - 0 o (a-8) (;" E) ki
s o + XU (20)
0z 28 _ 1 2 (X
a (B-a) ] i%—-(ﬁ-a) %E-(ﬁ-u)

Note that (20), when inverse Fourier-transformed over x, will contain a
double x-derivative. The form of (20) 1s that of the 15-degree scalar
equation while the dispersion relation 1s only as good as the 5-degree
equation. Thus, the equations derived from these recursion formulae can

be more expensive computationally than their scalar counterparts.

There is another way to derive approximations to the "exact square
root" elastic equation which also has the desirable feature that it
gives one-way equations which have the same form and dispersion rela-
tions as their scalar counterparts. This method is simply to assume a
form for the differential equation and then to match coefficients with a

Taylor series expansion of the exact square root equation.

If the full elastic wave equation (in some set of variables) can be

written as

-1

2
(8,, - 0AQ )q 0, (21)

then by the arguments following eguation (12) above, the corresponding

"exact" one-way equation can be written as

"
(=]

-1
(az - QAmQ )q (22)
(where Am is a diagonal matrix ). We can now look for an approximate
one-way equation by first assuming a form for that equation and then
matching term for term with a Tayler series expansion of (22). For

instance, 1let us Took for an equation which has the same form as the

scalar 45-degree equation:
(I + B k2)8 g = (B + 8B kz)q (23)
2'x' 2z 0 17x

We first expand equation (22) in a Taylor series about ki = 0
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™8

[~}

~
£

9_q =

Zz nx (24)

We then match equations (23) and (24) by multiplying (24) by (I + Baki)
and then equating the left-hand sides of the two eguations:

2 2 2 4 6 .
(BO + Blkx) (I+szx)(D0 + lex + Dzkx) + O(kx) (25)

To find Bo’ B1 and B2 we get three matrix equations to saolve:

Bo = D0 . BZDo + D1 -~ B1 = 0 , and BZDI + 02 = 0.
from which 1t follows that
- -nn} - -
52 = Dznl . Bl = BZD0 + D1 . and Bo = Do' {26)

The next higher order equation in the scalar recursion takes the form

(1 cklrag = (e + ekl v o k. (27)
The coefficient matrices in (27) can be determined in the same way. We
have done this numerically for equations (23) and (27) and also for the
one-way elastic 15-degree-type equation derived by Claerbout and Clayton
in SEP-10. The state variables we used were [axu . (l/p)fzz]T‘ We cal-
cutated their dispersion relation; they are plotted iin figure 2. By
graphical comparison, we determined that the two dispersion curves for
each of the equations have exactly the same shape as the dispersion

curve for the corresponding scalar equation.

The one-way elastic wave equations that we have derived in this
sectifon can be wuseful to us only if they are stabile. Moreover, if we
are interested in accurate modeling of elastic wave propagation., we
would 1like the equations to be "bullet-proof"” as well (stable for prob-
Tems with strong lateral velocity variation) and to wmimic the proper

refiection and refraction effects for elastic waves at internal



FIG. 2. Dispersion curve§ for one-way elastic wave equations 1n the
variables [8 u, (1/p)r derived by matching coefficients. The curves
are identica¥ to the dﬁspers1on curves for the scalar counterparts of
these equations (which are given by Muir‘'s recursion formula). The
solid line 1s the first order approximation; the short-dash 1ine 1s the
second order; and the long dash line is the third order.

interfaces. We have done some numerical experiments that show that we
can find one-way equations 1n any of the variables mentioned in the
table above that are stable for the constant coefficient case. Figure 3
shows the results of one such calculation. To produce these plots we

solved an equation in the variables q = [Bxu. (l/p)fu]T of the form

8a =+ (L« so)’l(Ls° + Mg (28)

89
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FIG. 3. An example of extrapolation with the first set of mixed vari-
ables listed in table 1. The initial conditions were constructed from a
point source that 1s equal strength in both P and S. The Q transforma-
tion given in table 1 was then applied to provide initial conditions for
the mixed variables. The top two panels show the extrapolation using
the mixed variables. The bottom two panels show the results of
transforming the solution to P and S. The P and S results are virtually
identical with those obtained by scalar extrapolation.
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and M2 is given 1in the table [see equations (12) and (13)]. The 1initial
conditions at 2z = 0 corresponded to the analytic solution of the full
elastic wave equation for a point source of equal strength in P and §
placed above the top of the plot. We used a Crank-Nicolson approxima-
tion to (28) to solve this problem. The top two plots show the solution
in the wvariables axu and (1/p)rzz. The bottom two plots show the solu-
tion transformed to P and S. The main thing to note is that the solu-
tion is stable. Figure 4 shows similar plots, but this time a vertical
velocity interface was placed in the medium slightly to the right of the
point source. We checked the discrete L2-norm of the solution at each
z-step and found that it grew exponentially fast, dindicating that the

equation is unstable. This is apparent in the plots.

We now believe that all such equations are probably wunstable for
the case of strong lateral velocity variation. This belijef is based on
an approach to stability discussed by Brown in the section on internal
boundary conditions 1in "Muir’s Rules for Matrices ... " (this report).
In that paper it is pointed out that the finding of bullet-proof approx-
imations to differential equations is closely related to the idea of
finding difference approximations that produce reasonable reflection and
transmission effects at dinternal dinterfaces. If the reflection and
transmission coefficients are of reasonable size, then the solution will
not blow -up when energy strikes the interfaces, i.e. the method is
stable. As long as we are going to require that the method yield rea-
sonable reflection and transmission coefficients, we might want to
require that these coefficients be good approximations to the reflection
and transmission coefficients for the full elastic problem. This seems
to be where the biggest problem 1s with all the variable sets given 1in
the table above. It appears that it is not possible to write down con-
ditions that are equivalent to the requirements that all stresses be
continuous at an dinterface wusing only the two variables in each set.
According to the arguments 1in the paper mentioned above, 1f we can write
down the interface conditions explicitly for a vertical interface, then
we can find a difference approximation that automatically satisfies
these conditions. Since we cannot write down those conditions expli-
citly, the outlook for being able to write down a physically reasonable

bullet-proof approximation seems now to be quite bleak.
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FIG. 4. This figure shows an example of an instability in the the mixed
variable extrapolation. The top panel show the extrapolation using the
mixed variables 11sted first in tablie 1. A vertical interface with a
30% velocity contrast is located just to the right of the point source.
The waves transmitted and reflected by the 1interface are growing
exponentially. The bottom panel shows the solution transformed to P and
S waves.

The difference approximation used to produce the plots in figure 4
was one which implicitly specified the conditions that q and axq be con-
tinuous across the vertical velocity interface. (An explanation for why
these conditions are implicitly satisfied can be found in the paper by
Brown mentioned above.) It is fairly simple to calculate explicitly what
the reflection and transmission coefficients are for these interface
conditions. It 1s conventional to calculate the ratioc of the reflected
and refracted P and S wave amplitudes to the incident P or S wave ampli-
tude. So we need first to transform from the variables q to the poten-

tial variables P and S. Finding the potential variables amounts to
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diagonalizing the wave equation (12). Define a diagonal matrix Am by

_ -1
A = QMO (29)
Then if we define new variables E by
~ -1
9 = Q g, (30)
equation (12) becomes
a%y ~
—-} - Ag = 0 (31)
m
0z

We will only calculate the reflection and transmission coefficients for

an incident P-wave. A plane incident P-wave has the form

~ . T
q, = [A exp1(kzz + ka x), 01,

1

where ka is the horizontal wave-number of the incident P-wave in the
1

first medium. The reflected wave will have the form

T
= [Rp exp 1(kzz - kd x), Rs exp 1(kzz -k, )],

q
R 8,

1
and the refracted wave will have the form

~ . . T
a; = [Tp exp 1(kzz + kazx), Ts exp 1(kzz + kﬁzx)] .

Here ka is the horizontal wavenumber of a P-wave in the second medium,
2

and kp and kp are the horizontal wavenumbers of an S-wave in the first
1 2

and second medium, respectively. The interface conditions that g and

3xq be continuous across an interface at x = 0 can be written in terms

-1 o~ ~

of Q and q0 q

R and qT:
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-1~ -1~ -1~
Q q, * Q 9 Q d;
and Qa3 +0olaa. = olag (32)
X 'o x 'R x T~
Let us take as an example the variables g = [axw, (1/p)fxz]T. 0-1 is
given by
2
it -ZBZaxx axx
-1 1
@ S e, 2
2 -28 1

Letting a = [A, O]T. r o= [Rp. RSJT, and ¢ = [Tp. TSJT. equations (32)
become
a+r = Q;lolr
and a-r = A'lo‘lo AT (33)
o o 11
where
- + ZHZK: -k: -+ Zﬂzki -ki
1 1 2 2
Q = Q =
o -28° 1 1 -28° 1
1ka 0 ika 1]
1 2
4 - 0 ik and 4, = 0 ik
ﬂ1 52

Equations (33) can be solved explicitly for r and = as a function of the

incident angle # = cos_l(alka /w) and a. This was done numerically and
1
the results are shown in figure 5. The biggest problem with these

reflection and transmission coefficients is the singularity: the coeffi-

cients become very large for certain incident angles. This would seem
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FIG. 5. The figure shows the apparent reflection and transmission coef-
ficients, for the first set of mixed variables listed in table 1. The
incident wave is a P wave. We believe the singularity in both the

reflection and transmission coefficients gives rise to the instability
shown 1in figure 4.

to insure instability. We tried all of the other sets of variables

listed in the table and several other boundary conditions of the type
T3,9; = Td,q,

where Tl and rz are 2 by 2 matrices, but all of the ones tried exhibited
the same features as the plot in figure 4. We concluded that the insta-
bi11ty 1s probably unavoidable with these differential equations.

Conclusions

We have not been able to conclusively select a set of variables for
elastic wave extrapolation. Each of the three types discussed fail to
satisfy all of the requirements of an 1deal operator. We feel, however,
that for modeling purposes the displacements are the best choice. The

present lack of higher order approximations limits the angular accuracy
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to a cone about the extrapolation direction. However, since the inter-

nal boundary conditions are satisfied the solutions should be correct
within the cone.



