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Introduction

One-way wave extrapolation equations provide an economical and
accurate method for certain types of wave modeling. In this paper we
consider the extrapolation with the scalar wave equations, and 11lus-
trate the method with the extrapolation of Love wave normal modes in

laterally varying media.

The basic restriction on extrapolation modeling is that the problem
contains no backscattered waves. This condition arises because waves
moving backward to the direction of extrapolation are not included in
the solution unless they are explicitly coupled with reflection coeffi-
cients. However, the method can be used to model refracted body waves,

head waves, and surface waves.

The economy of extrapolation methods is essentially one of storage.
Finite difference solutions of the full wave equation require storage
proportional to the product of the x and z grid dimensions. The one-way
equations, 1in their monochromatic form, only require storage propor-

tional to one of the dimensions.

Modeling with one-way equations has a further advantage 1in that
boundary conditions at layer interfaces need not be matched explicitly.

If the correct form of the variable velocity one-way equation is used,
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then the boundary conditiaons can reasonably be approximated by simply

varying the medium parameters.

Variable Velocity Extrapolation Equations

Consider the geometry for extrapolation shown in figure 1.
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FIG. 1. The geometry for extrapolation modeling 1s shown. The 1nitial
conditions are specified on the left, and the solution in the rest of
the medium 1s determined by extrapolation in the x-direction. The top
surface is a free surface.
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The medium is assumed to be governed by the scalar wave eguation
(a8 b3_ + abd__ - w2)Q = O (1)
2772 X%

where a and b are functions of x and z, and ab = vz. If Q is a pressure

variable (acoustic waves) then a is the bulk modulus and b is the
inverse of density. If Q 1s displacement (SH waves) then a 1s the
inverse of density and b is the shear modulus. The most general form of
equation (1) would include the term a(axb)ax in the operator. This term
corresponds to reflection and transmission coefficients in the direction
of extrapolation, and 1n this paper 1t is omitted. The boundary condi-
tions that accompany equation (1) are
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[Q] = 0 and [bn-VQ] = 0 (2)

A
where n is the unit vector normal to the interface and the square brack-
ets denote differences across the interface. For a horizontally layered

medium the boundary conditions reduce to

(el =0 and [bazQ] =0 . (3)

The one-way extrapolation equations are defined by the differential

equation

1
(3 -y

)Qe =10 (4)

n+l

where Sn+1 is a square root approximation generated recursively by

Muir's relation

TwS_ + (ad b3 - w’) \
S = n z z S -iw (5)
n+1 o + Sn ' ]

The square root approximations given by equation (5) are well known
to model accurate1y waves traveling within some cone of the extrapola-
tion direction. The dispersion curves for the first and second approxi-
mations (15- and 45-degree) equations are shown in figure 2. The
approximations have no evanescent zone in the kz direction (Ikzl > w/v),
but they do model behavior in the kx evanescent zone (Ikxl > w/v). This
is shown in the right panel of figure 2, which is simply a replotting of
the gispersion relation to show its behavior for both real and imaginary

values of k .
X

The square root operator in equation (5) will match the boundary
conditions in (3) exactly for flat 1layers. This is because the z-
differentials have the same form as the z-differentials 1in the full
scalar wave equation. However, since the true boundary conditions are

actually given by (2), the boundary conditions implied by the one-way
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FIG. 2. The dispersion relations for the first two square root approxi-
mations (15- and 45-degree equations) are shown. The left panel shows
the relations plotted in the conventional manner while the right panel
shows the re]§t1ons plotted 21n a manner which allows for imaginary
values of k_ (k. < 0) and k_ (k° < 0). The exact dispersion relation is
the stra1gﬁt 1¥ne in the r*ghtxplot. The extrapolation equations model
vaves well into the evanescent zone on the ki-Axis.

equations are approximate. In other words, the one-way equations use
the boundary conditions given by (3), regardless of the ortientation of
the interface; whereas. if the modeling were exact the boundary condi-
tions of (2) would be used.

The presence of a{x,z) outside the az operator in equation (5)

. If
1 [
however, a 1s independent of 2 (or its dependence can be neglected) then

means that we cannot guarantee unconditional stability of Sn*

aazbaz can be written as Bzvzaz. This allows a finite difference
representation of the z-differentials as

2 T
8zv az ~ (sz) (sz)
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which is an operator with strictly positive real eigenvalues. Following
Muir’s rules for causal positive real operators, the approximation Sn+1
can be shown to be unconditionally stable. Thus, to guarantee the sta-
bility for displacement solutions, the density has to be independent of
z; while for pressure solutions, the bulk modulus has to be independent
of z. It is conjectured that the form of equation (5) will be stable

for at least mildly varying values of a.

Love Wave Modes

As an example of extrapolation modeling we have computed Love wave
mode shapes 1n simple laterally varying media. The example 1s useful
for testing the modeling method because the modes contain both a pro-
pagating and an evanescent component. Also, because the analytic solu-
tion for horizontal layers is simple (the mode shape does not change),
it 1s easy to check whether the program 1s producing the correct answer

for the layered case.

As mentioned earlier, the SH-type displacements are governed by
equation (1) with a as the inverse of density and b the shear modulus.
Love waves (SH surface waves) have a solution to this equation of the

form (see Achenbach, p. 218-220)

u(x,z,t) = U(z) exp jw(t - %) (6)

where u{x,z,t) is the displacement in the y direction, U(z) is the mode
shape, and ¢ is the phase velocity of the mode. For a layered earth

structure the boundary conditions to be satisfied are:

1y a_u

2
2) [ul
3) [uazU] = 0 at layer boundaries (continuity of stress).

0 at 2z=0 (zero free surface stress),

0 at layer boundaries (continuity of displacement),

For the simple case of a layer of thickness h with properties y
and B, over a half-space with properties P, and By the mode shape is

given by
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FIG. 3. The example shown 1s the extrapolation of a lower order Love
wave mode for a layer over a half-space. The extrapolation is from left
to right, with the init1al mode shape shown on the left. The position
of the layer is superimposed on the plot. The fact that the mode does
not change shape significantly in the x-direction after demodulation
indicates that the extrapolation solution is correct, and that the mode
is being propagated at the correct phase velocity. The stnusoidal func-
tion plotted at the bottom is the demodulation function used. The fre-
quency of the mode 1s 0.18 Hz and 1its speed 1s 1.04 km/sec. The plot
has a 1 to 2 vertical exaggeration.

Acos vlz 0 £z2<h
u(z) = Acos rlh exp[-ivz(z-h)] z > h (7)
where
% "
: 2
2 2
= |% - 2 s @ | 2
,1 = 2 kx and '2 2 kx . (a)
’1 ‘2
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The boundary conditions also impose the further restriction that

b1 1
cot{v.h) = — —= | (9)
1 By 1v2

This equation is the period equation for the simplest type of Love

waves, and it has solutions in the range

@

B

w
ﬂz

> |k | >
X
With kx in this range, the mode is propagating in the layer and evanes-
cent in the half space. The period equation determines the relationship
between w and kx‘ and since it 1is nonlinear, the modes are dispersive

(velocity depends on frequency). The propagating speed of the mode is
given by

w
K (e - (10)

To test that the extrapolation works for a layered case, an initial
mode shape was specified according to equation (7). The solution was
then extrapolated in the x direction with a monochromatic 45 degree
equation. The density was assumed constant. This allowed the guaranteed
stable azvzaz form of the z differential to be used. At each step in
the x direction the solution was multiplied before plotting by the demo-

dulation factor

exp 19— x

c(w)

with c(w) determined analytically from equation (10). This tests two
aspects of the solution. First, multiplication by the demodulation fac-
tor effectively cancels the x-dependence of equation (6), 1leaving only
the mode shape. Consequently, the solution if done correctly should be
the same at all x-steps. Second, if the solution after multiplication

by the demodulation factor remains invariant with respect to x, then it
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FIG. 4. This example is similar to the one shown in figure 3, except
that the mode frequency is now 1.17 Hz., and its speed is 1.12 km/sec.

indicates that the mode 1s being propagated at the correct phase velo-
city. The results of propagating a low frequency and a high frequency
mode through a layer over a half-space structure are shown in figures 3
and 4. The initial mode shape is plotted on the left in each figure and
the solutions at varfous points in x appear to the right of {t. The
sinusoidal function displayed at the bottom of each figure is a plot of
the demodulation factor.

The 1interesting case 1s when the model parameters vary laterally.
For Love waves we have run two such cases. The first case is a dipping
layer which dips down from the initial condition. The solution was
again demodulated with a constant phase velocity determined from the
initial conditions; but since the medium now varies laterally, this will

not be sufficient to make the mode shape invariant with respect to x.
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FIG. 5. A Love wave mode in a 20-degree down-dipping layer. The plot
is similar to figure 3. The demodulation factor used is that of figure
3. The characteristic of the mode that seems to be preserved in the x-
girection 1s that 1ts spatial frequency 1n the layer 1s preserved.
Also, very little energy is radiated into the half-space.

The second example 1s a dipping layer that dips up from the initial con-
ditions. In this example, the energy contained within the layer 1is
diminished and is radiated into the half-space in the form of SH body

waves.
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FIG. 6. In thi1s example, the layer pinches out toward the surface.
This time the mode radiates energy out of the layer into the half-space
in the form of SH body waves.
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