WAVE EQUATION MULTIPLE SUPPRESSION: CORRESPONDENCE WITH TIME
SERIES

don F. Claerbout

wave equation methods should enable a correct prediction of the
topographically caused features of multiple reflections. This theoreti-
cal potential has not yet been routinely reaiized in production process-
ing. The reasons are a subject of current research. Thus 1t is a valu-
able exercise to specialize the wave equation methods to the case of
flat horizontal 1layers. Then the theory reduces to conventional time
series analysis so that noises and errors can be analyzed by conven-

tional methods.

The Source and the Free Surface

Techniques for processing multiple reflections are an extension of
those for processing primaries. However, in addition to a computer mesh
on which to hold the upcoming wave U(x,t) we need a second computer
mesh on which to hold a downgoing wave D(x,t). Alsoc we need a free
surface condition that upcoming waves change polarity and reflect back

down into the earth.

D(x,t,z=0) = Source - U{x,t,z=0) (1)

The source function may be fairly well known, or maybe it isn’t. Any-
way, 1in the final anaiysis, the sensitivity of the predicted multiples

to error in knowledge of the source waveform will be important. In
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modeling problems, the source may be taken to be a delta function on a

plane wave (or a spherical wave) and any waveform can be convolved on

later.

Interior Equations

Next we need to choose some interior equations. Since our final
objective 1s data processing, not forward modeling, we naturally choose
extrapolation equations instead of the full scalar wave equation. A
good place to start is with equation (10-5-1) on page 216 of Fundamen-
tals of Geophysical Data Processing (my book, 1978), which is

u -1iab 0 u Y 1 -1 u
da_ = -l z (2)
dz}D 0 iab D 2'Y -1 1 D

along with the definitions on pades 171-172 of FGDP, namely
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From equation (2) we deduce that if the impedance Y is indepen-
dent of depth =z, then the upcoming wave U and the downgoing wave D
are uncoupled. In the analysis of primary reflections, the cross term
multiplying YZ in (2) is wusually neglected. Now we are trying to
include some of the effects of this term. A way to introduce free sur-
face multiples, and they are the multiples of most practical importance,
is to introduce the assumption that the downgoing wave D is much
larger than the upcoming wave U. This happens when the reflection

coefficient c ~ YZ/Y is small compared to unity. We are assuming
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U << D (5a)
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Introducing {5) inte (2) and neglecting the assumed small quantities we

have
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We can bring (6) from the two-dimensional (w,kx) frequency domain to
the time and space domain if the square root is approximated by a ratio
of polynomials, and then substitute -1ie = at and 1kx = ax. Experience
with migration of primary reflections indicates that we may be able to
satisfactorily describe lateral variations in material properties, say
v = v(x,z) and ¢ = c¢(x,z) with (6), even though it was actually
derived with lateral Fourier transforms. 1 believe that the most signi-
ficant resulting error in (6) will turn out to be in the angular depen-
dence of the reflection coefficient from a dipping bed, but that this

error will not have substantial practical consequences.

Diffraction and Slanting Effects

Continuing to abandon those complexities which appear not to be at
the heart of the problem, we next expand the square roots in (6b), keep-
ing only the 15-degree term

t

1 v
u = 5 Ut ol Uxx + ¢c{x,2) D(x,z,t) (7)

As a practical matter equation (7) no longer has the ability to deal
with large offset. We might 1ike to handle large offsets but small dips.
A good way to deal with larger offsets is to do the 15-degree expansion

about some Snell p parameter other than p = 0. This leads to some
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lateral shifts in the <¢D term, an interesting subiject developed by
Moriey and Claerbout in SEP-15 (p. 191). But this, along with the U:x
diffraction term, bring us outside the realm of time series analysis, so
we abandon all these terms, knowing that we can come back to get them

when we have the courage.

Retardation

Our downgoing wave equation 1is now

1
D = -Vﬂt (8)

Define retarded time t':
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The chain rule for partial differentiation states
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The resulting equation for the downgoing wave is

= D' = 0 {10)

For the upcoming wave U we need the retardation transformation
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which by the chain rule fmplies a wave equation for upcoming waves
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c'(z") D'[z',t' = t" - 2 Jiu dz]
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Travel Time-Depth Leads to Convolution

Things will be clarified and simplified if we now introduce a

travel time-depth «r:

v
i = 7 (12)

With this definition and dropping all the primes, our basic equations

become

Df = 0 (13a)
Ur = véf) c(r) D(r,t-7)
= c'{¢) D{r.t-7) {(13b)

Integrating (13b) with respect to ¢ and noting that (13a) says we

may ignore the first argument of D, we get a convolutional form

U = JSe(r) D(t - ) dr (14)
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Forward and Inverse Problems

Let us now re-express the concept embodied by (14) in terms of Z-

transforms:

U(z) = C(Z) (Z) = C(Z)[S(Z) - W(2D)] (15)

Supposing that the source function S may be regarded as an impulse
S(Z) = 1, we are left with

€(2) T’gi%%fi data processing (l6a)
u(z) T~%L%%TT = wmodeling (16b)

An interesting interpretation of (16a) is that reflectivity is defined
as the ratio of the up- to the downgoing wave. In this way it is
equivalent to Don C. Riley’s "Noah" method.

Recapitulation

The theory developed here suppresses free surface multiples. We
started with a very general theory and made one approximation after
another until it all reduced to time series analysis. In time series
analysis there are well-developed procedures for analysis of noise and
stability. A way to apply this theory rather directly would be to make
vertical incidence wave stacks (called SIMPLANS by Seiscom Delta, Inc.)
of your field data. There is 1ittle hope that any of this will work on
CDP stacks. If the source waveform can be satisfactorily handled as
Riley did and if cable truncation phenomena are not too severe, it seems
reasonable to hope that Morley’s extension of this theory might work on
slanted wave stacks, i.e. on Snell waves. No doubt there are also many

other ingenious ways of applying this theory to field probiems.



