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Abstract

The well-known Wiechert-Herglotz technique for computing a
velocity-depth profile from refraction seismograms uses data in the form
of ray parameter as a function of intercept time (a p-r curve). The
technique of slant stacking used by reflection seismologists automati-
cally produces a p-r curve from a common shot profile, thereby bypassing
the arbitrary picking of traveltime and the several intermediate calcu-
lations of previous methods. Successful preliminary results are
presented for both synthetic and real data. This method deteriorates
for widely separated geophones and where a number of apparent sources
with 1low inter-source coherency coexist in a single profile, but is
capable of completely sorting out triplications 1in data with 1less

extreme contrasts without human intervention.

Introduction

The techniques used in the processing of reflection gathers are not
generally known or used by those engaged 1in the processing of refraction
profiles. There are, however, certain essential similarities in some of
the problems involved and in the parameterizations chosen in the study
of those problems. Here we shall detail one salient example: the pro-

duction of a ray parameter-time intercept (p-7) curve by the
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transformation of the data wavefield, or slant stacking.

Recent advances in the inversion of refraction profiles allow an
envelope of possible velocity-depth profiles to be computed from an
envelope 1in the ray parameter-offset (p-A) plane or 1n the ray
parameter-time intercept (p-¢) plane. This type of operation has been
variously called extremal inversion (McMechan and Wiggins, 1973) or Tau
inversion (Bessonova et al, 1974; Bessonova et al, 1976; Bates and
Kanasewich, 1976). One way of determining a p-r envelope 1s to produce
@ series of reduced traveltime plots and to find the region in each
where the slope is zero. This process can be shown to be equivalent to
the technique of slant stacking that 1s used in reflection seismology.
The main advantages of the slant stack approach are that 1t produces a
complete p-r locus by a reversible transformation of the data wavefield
(ie. the p-r plane is a data space), that slant stacking is relatively
fast, that 1t eliminates some of the subjectivity involved 1n the
current methods of producing p-r loci, that 1t allows explicit estimates
of envelope width to be made, and that it has the added aesthetic appeal
that a p-r locus is a caustic in the transformed wavefield. (A caustic
is the edge of a region of coherent energy formed by constructive

interference.)

By far the most extensive application of this approach 1s dimage
reconstruction 1in the field of nuclear medicine. A comprehensive
bibliography is given by Gullberg (1979). Chapman (1978) has previously
sketched some of the properties of a slant stacked refraction wavefield
and referred to similar work in the field of X-ray tomography, but did
not attempt to make direct application of slant stacks in 1inversion of
refraction profiles as we do in this paper. Schultz and Claerbout
(1978) have demonstrated the selectivity of slant processing in the
detection of reflectors not visible in raw data so we feit 1t worthwhile

to investigate 1its appiication to refraction data.
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Connections between Rafraction and Reflection

The motivation for investigating the use of reflection data pro-
cessing methods with refractions is illustrated in figure 1. Figure la
contains a sketch of a typical traveltime (T-A) triplication and 1b con-
tains the corresponding p-A plot. Refractions are represented by pro-
grade p-A branches such as 1-2, and reflections by retrograde branches

such as 2-3-4.
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FIG. 1. The continuity of reftection and refraction branches as seen 1in

the traveltime (a) plane and in the ray parameter (b) plane. Locus 2-
3-4 is a reflection; 1-2 and 3-5 are refractions. {b) can be derived

from (a) by differentiating since p = dT/dA.

The relationships between the four variables T, A, p and ¢ are

T = ¢ + pA; and, (1)

r = [ Adp (2)

where T is traveltime, p is ray parameter, A is offset and ¢ is the

traveltime projected to zero offset along a 1ine of slepe p through the



28

point (T,A). These relationships are 1{1lustrated 1n figure 2. This
representation has been previously discussed 1in SEP-11 by R. Clayton.
Refraction studies and velocity dinversions typically involve the
arrivals corresponding to the continuous locus 1-2-3-5 (figure 1). The
precritical extension 3-4 1s rarely specifically dealt with. One not-
able exception 1is the work of Kennett (1977) who considers 1leci of the
type 1-2-3-4 to determine the uncertainty in the depth to a reflector.

On the other hand, studies of reflections are primarily concerned
with loci such as 2-3-4 (figure 1) and ignore or even actively mask out
the refraction branches 1-2 and 3-5. Note that the segment 2-3 4s &
region of overlap. This overlap region 1s included in both refraction
and reflection studies but in rather different ways. The question then
arises as to whether the technigues of reflection seismology may be
validly and profitably applied to refraction branches and vice versa.
An example of the latter was mentioned above (Kennett, 1977) and a pre-
cedent for the former is evident in the generalized ray theory described
by Wiggins and Helmberger (1974) who treat the amplitude behavior of
arrivals refracted by a velocity gradient in terms of reflections from a
stack of thin layers. 1In the next section we shall exploit the treat-
ment of a velocity gradient as the limiting case of a layered medium as

the layer thicknesses go to zero.

p-r Curves for Refraction Branches as the Envelope of p-r Curves For
Reflections

The production of a p-+ envelope from @ refraction data profile s
the intermediate re-parameterization usually made as preparation for Tau
inversion since the Wiechert-Herglotz inversion integral can be con-
veniently stated as a weighted integral of a p-r curve (Bessonaova et al,,
1876). A p-# curve can be computed from a T-A curve or from a p-A curve
by using equations (1) and(2) with the added observation that p = dT/dA, as
implied by equation(l). These relationships are illustrated 1in figure 2,
which contains the T-A, p-A and p-r representations of a model in which

velocity increases slowly with depth.
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FIG. 2. The geometrical interpretation of equations (1) and (2). These
curves represent a model in which arrivals are refracted by a velocity
gradient. A 1ine drawn tangent to the traveltime curve (a) at any point
(T.. A.) will have slope Py and time intercept L Thus, the traveltime
curve 1n (a) can be mapped directly inte the p-A plane (b) or the p-r
plane (c).

Consider how the p-r curve in figure 2¢c can be expressed as the
Timiting case for reflections from thin layers. Figure 3 iliustrates
the T-A, p-A and p-+ curves for a model consisting of two constant velo-
city layers over a half-space in flat earth geometry. The p-+ curve in
this case 1s completely defined in terms of the two reflected branches
2-3-4 and 5-6-7 since p and ¢ are fixed for all points on the refraction
branches 1-2 and 6-8. Constant p implies propagation parallel to the
layer boundaries and so these arrivals are more correctly termed head
waves than refractions. This geometry can be extended to as many layers
as desired. An example of a 15-layer model 1s sketched 1in figures 4a
and 4b. The heavy line in figure 4b is the p-¢ locus for Wiechert-

Herglotz integration that would give back the 15-layer model.
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FIG. 3. The T-A, p-A and p-r representations of a model <consisting of
two constant velocity layers overlying a constant velocity half-space.
The numbers show the corresponding rays in each plot. Rays 1, 4 and 7
are observed at A = 0. Rays 3 and 6 are c¢ritical reflections.

Assume now that the layer sequences 1-6 and 8-15 in figure 4 are
approximations to smooth velocity gradients and that a better approxima-
tion can be obtained by taking smaller steps. If the dradients were
represented by stacks of infinitesimally thin layers, the p-r Tlocus
would become apparently smooth as shown in figure 4c. Note that, in the
1imit, arrivals refracted in a velocity gradient produce convex p-+ seg-
ments and that reflections produce concave p-r segments. In the follow-
ing section methods for the production of p-r curves from observations

are discussed. Specific examples will then be presented.



time intercept (7)

velocity

(a)

depth

ray parameter (p)

(b)

time intercept (1)

FIG. 4. The layered model in (a) can be represented in the p-r plane as
shown 1in (b). In (b) the heavy line is the path of integratiecn regquired
for Wiechert-Herglotz inversion which would give back the model in (a).
As we let the layer sequences 1-6 and 8-15 approach an infinite number
of thin Tayers, curve (b) will approach the smooth curve (c) and the
steps 1in (a) will appear as a smooth velocity gradient. In (c) the num-
bered points correspond to the similarly numbered points in figure 1.

Methods of Producing p-r Curves from Data

There are two approaches to the determination of a p-t curve from a

refraction profile - kinematic and dynamic.

The kinematic approach is the one in current use and consists of
some variation of the following. The definitions of p and = in figure
2a are not used directly for data analysis because of the difficulty of
determining slopes and points of tangency from T-A observations that
exhibit local scatter in both time and amplitude. Hence, the T-A curva-
ture 1s enhanced by replotting the observations as a reduced time sec-

tion by the transformation
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Te(B P = T(A, p.) - peA, (3)

where T(Ai’ p1) = T1 is the traveltime of the point (T1, A1) ;

TR(Ai' p1) = TR,1 is the reduced traveltime of the point ( T1. A1) :

and Pr is the reduction ray parameter.

slope = 12
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FIG. 5. The relationship between true and reduced traveltime curves.
Curve 1 is the true (T) curve and 2 is the reduced (T.) curve. A
separate T, curve 1s obtained for each p_, chosen. 8¢ 1s the uncertainty
in ¢ at p =p and is defined by the scatter in the data at A.. The
region between a and b where the TR curve 1is effectively horizontal 1is
the Fresnel zone.

The relationship between a true traveltime curve T and a reduced
traveltime curve TR is shown 1n figure 5. The reduced time TR,1
corresponding to zero slope on the TR curve is the required L the ray
parameter corresponding to that point is the required P, ( = pR): and,
when a p-r envelope as opposed to a p-¢ line is being determined, the
appropriate envelope width 8+ at (71. pR) is indicated by the scatter in
the reduced traveltimes. Each reduced time curve gives one point on the
p-r curve. Good examples of this procedure are illustrated by Bates and
Kanasewich (1976) and Kennett (1977) among others. Variations are

presented by Garmany et al. (1979) and Spudich (13739).
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A major element in the philosophy which guides current state-of-
the-art data processing in reflection seismology is that transformations
should, whenever possible, be from one data space to another so that no
data are omitted in processing at any step. Typical examples are stack-
ing, migration and filtering. These processes all result in a new suite
of seismograms (i.e., a data space ), and are often reversible. On the
basis of the data space criterion, p-r, but not p-A, 1s an acceptable
mode of data presentation. It 415 dinteresting 1n this regard that
apparent velocity measurements made with arrays involve a process which
is similar to slant stacking, but that the results are utilized in
kinematic form (p-A or T-A); cf. Johnson, 1967; Simpson et al, 1974. A
p-r wavefield has the time dimension + that is essential to a data
space, and it can be produced from the original data traces by an
inverse Radon transformation (IRT). An IRT implies an operation on the
entire wavefield for all pR, and 1s implemented by the procedure called
slant stacking. We term this the dynamic option for producing informa-

tion in p-r space.

Slant stacking can be performed in either the +time or frequency
domain. In the frequency domain, the IRT, which produces & slant stack

from a seismic profile, can be obtained by using the slice theorem:

F‘I'('”’ p) = Fo(w. -wp) (4)

where Fx denotes & Fourier transform of wavefield x. & is the observa-
tion (seismogram) wavefield and ¥ is the transformed (p-+) wavefield.
Equation (4) says that F@' the two-dimensional Fourier +transform of &
evaluated along the Tine -wp, 1s the Fourier transform with respect to
time of its projection ¥+, p). In the frequency domain., a forward
Radon transform (FRT) that produces a seismic profile from a slant stack

is

1 +00
T, A) = -5 Jr quw. p) exp[-1w(T - pA)]IwI dew dp (%)
4 -

In the time domain, the IRT 1s (Gel’fand et al, 1966; Chapman, 1978;
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Thorson, SEP-14)

+00
W, p) = J &(r + pA, A) dA (6)
-00
and the FRT 1s
+00 1
®T.8) = S ¥T - pA. P)*[‘é‘; Mo(T - pn)] dp (7)

where Mn is defined to ensure convergence of the integral (5) since the
inverse Fourier transform of | w | does not exist. £ is a cutoff fre-
quency which 1s usually set to the Nyquist frequency. A working defini-
tion of Mn(t) is

sin 9t 2 sinz(ﬂt/Z)

xt *t2

0 = Mﬁ(t)

Slant stacking involves multiple sweeps of the data traces. Figure
6 illustrates two ways a slant stack can be done in the time domain.
The first option is to fix p and sweep over #; the second is to fix =»
and sweep over p and then to 1increment the fixed quantity and repeat the
sweep. In either case the procedure 1s to sum all the amplitudes along a
given 1line of slope p and intercept # and to plot that accumulated
amplitude in the new p-+ data space. The transformed wavefieid has a
sample dincrement of dr in time and 1its traces are separated from each
other by the p increment dp (see figure 9 for an example). dp 1s chosen
to be < a Fresnel zone, which is that increment corresponding to the

region of apparently constant p (figure 5).

Figure 7 illustrates a third way of performing slant stacking 1in
the time domain, that is, from the point of view of the total contribu-
tion of a single arrival. Each T-A point contributes along a locus 1n

the p-r plane that goes from (p, ) = (+w, -w) to (- o, +w) as shown 1in
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FIG. 6. Two methods of performing a slant stack. The heavy 1lines are
the traveltime curves. In (a) the ray parameter 1s fixed and ¢+ is incre-
mented. In (b) ¢ is fixed and the slope p 1is incremented. dp =
pa___1 - pj where j is arbitrary. '
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FIG. 7. A single arrival {(T_.,, A ) in the T-A plane transforms onto a
line p (T.-£)/A, in the ﬂ~r ﬂ]ane. The heavy line in (a)} is the T-A
curve; the heivy 11ﬂe in (b) is the corresponding p-r curve. The opera-
tion to get from (a) to (b) is typically thought of as mapping in the
kinematic approach, but is viewed via the dynamic (wavefield) approach
as a transformation.
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figure 7b. Each such locus is a straight line as it is an alternate

expression of equation (1):

p o= (T -mat (8)

The maximum integrated amplitude contribution for the point (TJ. Aj)
will occur at the point (pi. fj) in the p-# plane (figure 7b) because of
constructive interference with the arrivals within the 1increment pj+e
and pj-e where e 1s the half-width of the Fresnel zone (figure 5). Thus,
the Tocus of (pj. TJ) in & slant stacked wavefield appears as a caustic

curve. Examples are presented below.

A single seismogram, which is a locus of constant A in the T-A
plane, transforms onto the entire family of straight Tines of slope -1/A

in the p-A plane since, from equation (8):

- = -A (9)

which can be recognized as a statement of the solution of Clairaut's
equation (Ince, 1956). Chapman (1978) has exploited this property for
the construction of synthetic seismograms from a p-r curve. The major
contributions to a seismogram at any A come from those elements in the
p-r plane where there is significant energy with slope -1/A. This can
be recognized as the FRT as defined by equation (7). Thus, we have
obtained in an intuitive way the underlying principle of the work of
Chapman (1978) and Wiggins (19768), as expressed in equation (5), by
approaching it from the direction of the slant stack processing of

seismic reflection data.

It should be noted that, provided that a sufficiently small dp is
chosen, slant stacking does not involve any restricting assumptions
about the data. It 1s simply an alternate and equivalent form of data
presentation. Thus, for example, if one can construct a p-¢ curve for a
laterally inhomogeneous medium, a profile of seismograms is defined, but
the physical validity of this profile is questionable because p changes

along the ray when the 1incident angle 1is no longer referenced to
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vertical. Other practical model-independent applications are, however,
possible. For example, interpolation to produce a seismogram at any
desired A in & recorded or synthetic profile can be done by doing an IRT
of the available traces, and then an FRT for the desired value of -1/A.
Radon transforms can also be used to filter a complete profile at once
since noise tends to stack at the higher p values. Both interpolation
and filtering have been found to work well, but these applications are
beyond the scope of the present paper and so will be reported elsewhere

in more detail.

To this point most of what we have presented 1is not new. The
application to which we now turn, however, is new; the foregoing sec-
tions were included for completeness and to set the stage for the exanm-
ples in the following section. Also, since the sources for the theoreti-
cal foundation of our work are not available in any one other publica-
tion we have attempted to give a fairly complete synthesis of the

salient 1ideas.

Examples

In order to illustrate the properties of slant stacks of refraction
profiles +two refraction profiles, one synthetic and one real, were pro-

cessed. Each of these will be presented in turn.

The synthetic example was derived from the p-A curve shown in fig-
ure 8. A synthetic refraction seismogram profile produced from this p-A
curve by the disk ray theory algorithm {which is a form of FRT) of Wig-
gins (1976) was slant stacked to produce the wavefield in figure 9a. A
discussion and examples of the disk ray theory algorithm was also
presented by R. Clayton in S5EP-11. In figure 9a many of the individual
linear loci described above (figure 7) can be followed and seen to com-
bine to form a high amplitude caustic as predicted by the theory. This
caustic should be the desired p-r curve. For comparison, the p~-r curve
computed directly from the p-A curve in figure 8 by equation lc is shown
in figure 9b. Because slant stacking induces a time-stretching of the
data, a filter which enhances the higher frequences 1s a useful compen-

satory step and has been applied 1in obtaining figure %a. For comparison,
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FIG. 8. A model p-A curve. This curve was used to construct a theoret-
ical example of refraction slant stacks as discussed in the text.

the unfiltered results are shown 1in figure 9c.

Before considering a real data example it is important to emphasize
the salient criteria and sources of potential difficulty in correct
tdentification of the desired p-¢ locus. The most important point is
the perceptual paradox that, although an entire slant stack wavefield is
composed of straight lines, one should avoid seeing them. This may take
some practice but 1t 1s essential since the goal 1s to find a continuous
(except where a low velocity zone occurs), piecewise curved caustic
which is the envelope of the straight lines. In a slant stack wave-
field, continuity of the p-# 1locus corresponding to a T-A triplication
1s expected because the 1nitial motions of both refractions and
postcritical reflections are 1n the same direction. Precritical reflec-
tions are phase shifted by an amount which approaches « relative to the
postcritical reflections, and so they exhibit an apparent disconnection

from the main p-r locus near the critical reflection.
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FIG. 3. Slant stacks for a synthetic refraction profile. The synthetic
profile from which these slant stacks were produced was computed from
the p-A curve in figure 8. The numbers along the curve in (b) correspond
to the similarly numbered points along the p-A curve in figure 8. The
curve (b) was produced by direct integration of the p-4A curve in figure
8 and can be used as & basis for comparison. The 1inflection points (4
and 7) correspond to the cusps on the p-A curve. Stacks (a) and {c) were
produced from the same synthetic profile. Stack (a) included a filter to
enhance high frequencies; stack (c) did not. Curve (b) is displaced in ¢
retative to (a) by 10 sec.; (c) is displaced by 20 sec.
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Even with the best of deconvolutions, any given arrival in a pro-
file can rarely be confined to one cycle, and if it can it is usually at
the expense of other arrivals. There are, therefore, in a slant stack,
extensions from the desired p-r 1locus toward greater r which can be
recognized and eliminated from consideration. Additionally, while the
caustic is often associated with the largest amplitude in the local
region of the wavefield, this 1s not a stable guide, especially when

seismograms from different sources have been combined into one profile.

It 1is useful when ambiguities are present to plot the slant stack
with a variety of formats (e.g. polarity reversal) and with various
filters, to aid in accurate location of the caustic. The caustic itself
should remain in a fixed position and correspond to zero amplitude
throughout these changes. For example, compare figures 9a and Sc. In
9a, the caustic 1s simply locatable by searching between the maximum
positive and maximum negative amplitudes at each p. In figure 9c¢. the

first polarity change as ¢ increases is a useful criterion.

In summary, the key features of the p-+ locus are continuity, cur-
vature and wminimum s. With these points in mind the investigation of

the slant stacks of a real dataset can proceed.

Figure 10a contains & reproduction of a common shot refraction pro-
f1le that was first presented by Richards and Walker (1959) and was
interpreted by Richards (13960). Grant and West (1965) presented the
results of Richards (1960) directly, not attempting reinterpretation.
On the basis of the results of slant stacking these data we have pro-
duced a p-r curve which differs only minutely from the interpretation of
Richards (1960), who used classical kinematic techniques. The only
difference between the interpretations is that we find slight velocity
gradients, whereas Richards assumed constant velocity layers. For exam-
ple, Richards himself noted that the refraction labeled in figure 10a
seems not to be tangent to the reflection branch at the critical dis-
tance and suggested that this may be due to difficulty in observing the
first cycle of the refracted arrivals. An alternative explanation is
that there could be a velocity gradient at the top of the main reflec-
tor, which 1s the Rundle limestone.
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FIG. 10. The refraction profile in (a) 1is reproduced from Richards
The first {upper) trace 1s at A = 7450 feet from the shot point

{1960).
and the spacing between traces is 400 feet. Six shot sizes ranging from

30 to 175 1bs were recorded. The digitization required for slant stack-

ing unavoidably introduced some high frequency noise. Two slant stacks
of these data are shown 1in figure 11. The insert (b) shows a sketch of

the interpretation indicated by the slant stacks. The path indicated by
increasing numbers is a path of constantly decreasing p. The same path
is shown in figure llc. This sketch has been purposely distorted iin

order to make each branch clearly visible.
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FIG. 11. Slant stacks for the refraction profile 1in figure 10a. Stack
(a) is the unfiltered stack, (b) is similar to (a) but includes high
frequency enhancement filtering, and (c¢) ts the net result which is the
p-¢ locus extracted from (&) and (b). The numbers in (c) correspond to
those in the sketch 1n figure 10b. We present the extra velocity scale
in kilofeet / sec. for those readers who wish to make a comparison with
the results of Richards (1860).
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Figure 11 contains the results of slant stacking the profile in
figure 10a. Two stacks are shown, one unfiltered {(a) and one filtered
(b) as was done in figure 3. The p-+ curve that was extracted 1is con-
tained in figure 1lc. The p-+ locus 1is not complete right up to » = 0
because the data do not include traces at the smaller distances (figure
10a). As the apparent velocity decreases, the high frequency content of
the arrivals generally increases (figure 10a), so at small ¢ the p-r
locus is more clearly seen in the filtered stack in figure 1lb than in
the unfiltered stack in figure 1lla.

In choosing the profile in figure 10a we sought an example upon
which to test the slant stack procedure through a duplication of previ-
ously obtained results. Our results support the basic 1nterpretation
originally proposed by Richards (1960) so we feel that further applica-
tion and investigation of slant stacking for use in refraction interpre-
tation 1s warranted. Of particular interest would be application to
profiles containing ambiguities since the work of Schultz and Claerbout
(1978) indicates that a high level of selectivity is associated with

slant processing.

Further Comments

Although the concept of slant stacking is straightforward, there
are a number of limitations and computational complications in practical
application. These can be salient determinants of the success or
fallure of specific applications, so some mention of the main ones is in

order at this point.

One of the main limitations for the application of slant stacking
to refraction profiles arises from the fact that the profiles are usu-
ally spatially aliased. In order to avoid spatial aliasing the geo-
phones must be placed at a distance from each other which 1s less than
one-half the wavelength of the highest frequency one wishes to resalve;
aliasing is thus increasingly more important as A decreases. An aliased
profile does not allow a reliable p-¢ locus to be produced since it is
essentially a series of independent points, each of which produces end

effects (see below).



45

Another limitation associated with data is related to the inter-
source coherency of the apparent source functions in the data. This is
no problem when the sources are shots but might be a problem 1f earth-
quake sources were used. Since slant stacking depends upon constructive
interference to delineate the p-¢ Tocus it works well only when the
apparent sources exhibit the same initial polarity. For the purpose of
p-r determination the length of apparent source functions is not criti-
cal, nor is their similarity beyond the first half cycle. In fact, dis-
similarity in the later parts of the wavetrain is an advantage because
these will not then contribute potentially confusing coherent streaks in

the p-r plane.

Another feature to be aware of is the end effects due to spatial
data truncation. End effects are seen 1in the p-r plane as a fan of
energy passing through the p-r point corresponding to the end of a trun-
cated T-A branch. Examples are shown by Schultz and Claerbout (1978).
End effects can be reduced by extrapolating the data wavefield prior to

stacking or by employing tapered mutes.

The stacking algorithm itself produces a smearing of energy toward
the direction of 1increasing . A clear example of this is seen 1n figure
9¢. The smearing is predictable, however, and hence can be eliminated
by filtering. For a forward stant stack, smearing toward increasing =
is not important since it is the locus of minimum coherent ¢ that is
desired. Smearing 1is 1important if reverse stacking is to be done because
smearing in the direction of decreasing r gives the seismograms an

unwanted acausal component.

One of the main computational elements required in slant stacking
is @a stable interpolation scheme. This is evident if one considers the
time-domain form of slant stacking [equation (6)] by which amplitudes
are summed along lines that pass obliquely through a wavefield that is
sampled at some fixed time increment. 1In the frequency domain approach

[equation (4)] interpolations are required in wp.

There are a number of options that can be programmed. For example,
if one has prior knowledge of the approximate location of a traveltime

curve, or if a particular branch requires detailed study, mutes can be
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applied to the data to reduce unwanted contributions. These mutes are
typically tapered to avoid introduction of truncation or end effects.
More complete discussions of the advantages and difficulties in practi-

cal slant stacking will be presented elsewhere by the second author.

One can speculate on the potential application of slant stacking to
the automation of refraction inversions. We have here demonstrated
that, providing that the data meets certain criteria, the p-r curve can
be directly obtained. A1l that 1is required in addition 1s an algorithm
that will search out the p-¢ locus or envelope 1in the slant stacked
wavefield to input into a standard inversion program. We have already
mentioned a couple of overly simplistic criteria for p-r locating.
Additional constraints, such as requiring a monotonically decreasing
function of both p and ¢, or the tighter constraint of requiring a
final model to be a single valued velocity function of depth, are obvi-
ous. Pattern recognition algorithms are usually cumbersome and 1t wmay
be desirable to retain some human intervention and intuition 1in the
inversion process. When presented as a slant stacked wavefield, the
absolute maximum 8¢ at any p is one period of the wavefield local to the
p-r point in question, and a §r of the order of one tenth of a period

would be realistic for most visually determined envelopes.

A potential application for an automated d4nversion scheme 1is to
marine profiles. Present marine recording cable configurations typically
involve 48 or 36 channels and well-known sources, but their geometry
tends to favor long recording times as opposed to a wide range in A, so
that complete triplications are rarely recorded. The wuse of longer
recording cables could produce ideal datasets for automated inversion.
Another marine option which would allow extended distances would be a
fixed (perhaps ocean bottom) recorder used with a moving repetitive

source.

Conclusion

The application of slant stacking to the processing of refraction
profiles has been demonstrated. Providing that certain criteria with

respect to data quality, spacing and A extent are met, slant stacking is
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capable of unfolding triplications. These preliminary results encourage
further application and development toward realizing the demonstrated
potential of the routine processing of some types of refraction profile

in a highly automated manner.
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