IX. IMPLEMENTATION DETAILS

The two preceding chapters were dedicated to the development of

techniques for iteratively maximizing the norm ratio U(X,x ,uz). Algo-

1
rithms for implementing the techniques in both the time and frequency

domains were briefly outlined. Further details of implementation and

guidelines for choosing input parameters are given in this chapter.

A. Choice of Threshold

In Chapter VI norm ratios such as U(X,2,8) were proposed where G is
the estimated distribution of the current reflectivity series. These
approaches have a drawback because & is often less than 1. This causes
problems because the gradient blows up for amplitudes near zero. A
partial remedy is to add a small constant to the reflection magnitudes
to move them away from zero. The effect of this procedure on the gradient

is illustrated in Figure 9-1.

Q—
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+ FIGURE 9-1. On the left is the gradient versus reflection
amplitude for a norm ratio such as U(X,2,.55). The gradient
modified by slightly increasing the amplitudes is shown on
the right.
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We have tried several methods for implementing this procedure. What
worked best was to set the constant to some percentage of the scale esti-
mated from Equation (5-15). The percentage is reduced as the iteration
proceeds. This allows large events to be considered first. Smaller
events are brought into the gradient in later iterations. When the algo-
rithm converges the constant should be at the noise level. Unfortunately
we have found no consistent method for choosing the constant and how to

reduce it. What worked for one set of data would fail on another.

B. Choice of Initial Filter

Because the equations being solved are non-linear, they may have
several relative maxima. Which of the maxima is found for a solution is
determined by the initialization of the inverse filter. The most unbiased
choice is a centered unit spike, £ = (0.....1..... 0). Moving the spike
towards the beginning causes the time domain implementation to favor
causal solutions, thus reducing precursors. The location of the spike
does not affect the frequency domain implementation. We have tried using
the estimated minimum phase inverse as an educated initial guess. The
results obtained were identical to those using the centered unit spike,
and convergence was not accelerated.

When deconvolving common shot gathers the results of processing one
gather can be used as an initial estimate for the next gather. This works
best when the source waveform is relatively constant along the line. Often
convergence can be achieved in two iterations using this procedure.

' The time domain implementation allows the length of the inverse filter

to vary. We have studied the effects of varying the filter length and often
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it modifies the solution obtained. Using a longer inverse can increase
resolution but requires more data to average out the noise and increases
the ability of the filter to combine events into a single spike. Generally
the length of the inverse filter should depend on the data window length,
number of channels, estimated bandwidth of the source, and noise level

present in the dataset.

C. Constraining the Bandwidth

Seismic data is typically oversampled because field recording systems
usually suppress frequencies above the half Nyquist. Generally energy
present above the field filter cutoff represents noise and is undesirable
in any deconvolution procedure. F. Muir (35) has suggested a clever
method for constraining the bandwidth of the solution. Only alternate
lags of the auto and crosscorrelations are computed. Zeros are inserted
for the lags not computed. The solution of the Toeplitz system consequently
has half the frequency range of the original data.

This procedure halves the number of degrees of freedom allowed the
inverse filter which yields a statistically more reliable result and allows
a longer filter to be computed from a given set of data. The procedure is
also computationally attractive because only half as many lags of the auto-
and crosscorrelations are required. If much energy is present in the
high frequency portion of the spectrum, this method is potentially dangerous
because these frequencies are aliased. This aliasing distorts the low

frequencies.
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D. Truncation and End Effects

Generally, seismic sections are windowed prior to deconvolution.

This allows noisy portions to be edited out, which improves stationarity
but causes problems because the sharp edges of the editing window can
introduce high frequencies not present in the data. The traditional
remedy is to apply a triangular or cosine taper to the edges. This
removes the high frequencies but introduces low frequencies. These low
frequencies may have been suppressed by the field filter and are conse-
quently blown up by the deconvolution. We have found the best approach
is to use no taper. The high frequencies can be suppressed by the
method explained in the previous section.

Another problem caused by windowing is the inverse filter not being
completely meshed with the inputs at the edges. This often creates
spurious events at the beginnings and ends of the outputs. These events
appear on the first iteration and tend to dominate the succeeding solutions.

This problem can be partially avoided by estimating statistics and
a gradient from samples of the reflectivity series computed with the full
inverse filter. On the final iteration the ends can be computed using
the partial solutions of the Toeplitz system. The Levinson recursion
estimates a filter of length n + 1 from one of length n. The first samples

of the reflectivity series are computed as

_ 1
Xy = Yobo
2 2
=y £ 2+
¥ =ttty Ey
x, =y £3+y £ d+y £l (9-1)
' 2 0 2 1'1 2%o

where the superscript on f represents the n-th partial filter. This
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procedure is applied to estimate the beginning portion of the reflectivity
series. The full length filter is then used to compute the central portion.
A simple way to estimate the end portion is to reverse the reflectivity
series, RHS, and inputs. The same algorithm used to estimate the beginning
portion is then applied. This procedure is computationally expensive
because the system of equations must be solved twice and core must be

available to hold all inputs and outputs simultaneously.

E. Correcting for Spherical Divergence

The amplitude distortions caused by spherical divergence are a major
violation of the stationarity assumption. 1In the preceding chapters we
have tried to find a filter whose outputs maximize spikiness. Here we
use the same concepts to estimate a gain constant which minimizes spikiness,
thus correcting for spherical divergence.

Let yij be the i-th sample of the j-th recorded reflection seismogram
where there are m channels, each having n samples. The exponentially

gained seismograms, X, are defined as
X,. = y..kl (9-2)

where A is a gain constant chosen to optimize some property of X. Assume
the gained seismograms are characterized by the generalized Gaussian family
of distributions. The norm ratio given by Equation (6-7) is a scale-
invariant measure of the probability that X is a member of the distribution
characterized by the shape parameter a2 and not ul.

Using Equation (9-2), the norm ratio can be written as a nonlinear

function of the gain constant A:
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By minimizing W, the optimum gain constant, A*, distorts the seismograms,
making the probability very low that they are described by uz. Thus, the
gain constant modifies the inputs so that their distribution is as close as

possible to al.

1. A General Solution

If there exists some A* which minimizes Equation (9-3), its first

derivative vanishes,

dw (A% ,0y,05,Y)
ax

=0 . (9-4)

An iterative method is used to solve Equation (9-4) because nc analytic
solution exists. The classic technique is Newton's method which is often
unstable for arbitrary nonlinear functions.

Figure 9-2 shows the norm ratio as a function of the gain constant
for eight seismic gathers. The function is very smooth and has a global
minimum. Newton's method, given a reasonable initial guess, should have
no problems minimizing the function.

Let Xk be the k-th guess for solving Equation (9-4). Newton's method

gives the next estimate from

aw .k
bl ok an o010
PR W4 . (9-5)
2w .k
d)\z (>\ Iallazly)
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FIGURE 9-2. The norm ratio, W(A,a1,05,Y), plotted
versus A for the seismic gathers of Figure 9-3. The
numerical values of W for each gather were scaled
between (-1,0).
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The simplest stopping condition is when

Lk

where € is the desired accuracy.

Taking the derivatives of Equation (9-3) and simplifying gives

U S R |

ax .t |a. T B,

=1 (] J
and
2 2
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oz L x B TN n] Y%
=1 | 3 J J ]
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A program using Newton's method was implemented and run on several
sets of real data. Figure 9-3 displays seismograms before and after
exponential gain. Eight gathers having six traces each were used. The
initial guess was A = 1. az was estimated from the data .as .6. ul was
arbitrarily given the value 2. The iteration converged with an accuracy
greater than 1 x lO_6 after five iterations. The average distribution
of the output was O = 1.47, about halfway between a double exponential
and a Gaussian.

Newton's method is a general minimization technique. For specific

values of ul and dz, more efficient search procedures can be implemented.

2. A Specific Solution

The generalized Gaussian with infinite shape parameter is a uniform
distribution. Several experiments have shown that seismic data generally
has a shape parameter near 1. It is believed that the optimum function to
minimize is W(A,®,1,Y).

If all channels are of the same length, an equivalent function to

W(A,®,1,Y) is

max (Iyijki|)
i

V(A,Y) =
]

log -

! Z (!Yijxil) (9-9)
i=1

i ~18

The numerator of Equation (9-9) simplifies because the maximum term of

the sum,

n

' ? dy.. [2h o (9-10)
i=1 Y13
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dominates as O goes to infinity. Hogg (24) gives empirical results and
Uthoff (36) theoretical results which imply that Equation (9-9) is optimal.
For typical seismic data, a more robust function might use the lower bound
of the upper percentile of the magnitudes of the gained seismogram instead
of the maximum value.

The Fibonacci search method is a more efficient way of minimizing V
than Newton's method. It requires a search interval within which V is
unimodal. Given an initial search interval (1.,1.01) for the data of
Figure 9 -3, the maximum error after 1l function evaluations is 1 x 10_4.
After 16 evaluations, the error is less than 1 x 10_6. The gain constants
differed by less than 1 x lO“4 from those found by Newton's method. The
outputs were slightly more uniform because the average shape parameter
was 1.62.

The algorithm was tested on uniform random numbers. The estimated
gain constant differed from 1 by less than 1 x 10_5. This implies the
minimization will do nothing to data which are already uniformly distributed.

Care should be taken when using this method before deconvolution as
the statistics of the noise are not affected by spherical divergence.

Boosting the gain of later portions of seismograms can raise the noise to

unacceptable levels and can degrade the deconvolution.



